通过一系列对比与分析可以得出:升高温度会导致主相WC的粒径增大;而降低温度至700℃后会出现W2(C,O)晶相。两种实验方案均对样品的电化学性能不利。
图 3.7 AMT在5%H2+95%CH4 40ml/min流量气体中750℃保温8小时的XRD衍射图
图3.7为偏钨酸铵在5%H2+95%CH4气体中加热后的XRD衍射图。此实验为了与之前使用的25%H2+75%CH4气体作对比,因此将其他条件保持不变,即0.4g样品质量,40ml/min气体流速,750℃加热温度保温8小时。通过与图7的对比发现,在此气体下的试样W为主相,且与图7中700℃类似的是出现了W的碳氧化合物。通过粒径分析可以发现,WC的[101]晶面衍射峰计算粒径为9.1 nm,高于25%H2+75%CH4气体下相同晶面衍射峰对应的WC的粒径0.2nm左右。
通过对比可以发现,当碳源气体浓度过高时,不仅会导致表面积碳严重,同时对晶相纯度以及WC粒径大小有负面影响。
图 3.8 AMTMH1在400℃~750℃不同温度节点下的XRD物相图
图3.8为在不同温度节点均不保温的前提下,在400℃至750℃升温过程中的不同产物。通过XRD衍射图可以观察其在每个节点生成的相。
通过上图分析,在400℃下,偏钨酸铵开始分解。对400℃时保温2小时与4小时的实验结果分析得出,400℃时保温并没有新的反应发生。在XRD检测中能确定的相也只有C。而在500℃时,有(NH4)0.42WO3 与(NH4)0.33WO3产生。在400℃~600℃加热过程中,500℃时的产物(NH4)0.42WO3与(NH4)0.33WO3通过反应转化为WO2。此时500℃的产物依然有残留。在600℃~750℃过程中,没有其他相生成,而是进一步将(NH4)0.42WO3 与(NH4)0.33WO3转化为WO2。在700℃时,反应基本完成。750℃时W元素完全以WO2的形式存在。
结合图3.6,在700℃与750℃保温8小时后发现,出现了WC与W2C,并且有W的存在。而通过两个保温温度的对比发现,升高温度至750℃时对WC的生成起到了有利的作用,同时降低了W的含量。在700℃时还发现了W2(C,O)的新相存在。在750℃生成的主相WC的粒径平均为8.9nm,远高于之前实验结果。根据以上实验推测出可能的反应顺序为:
- 上一篇:邻苯二甲酸酯增塑剂污染的去除方法研究+文献综述
- 下一篇:Mo2C饰Pd基催化剂的制备与性能
-
-
-
-
-
-
-
NFC协议物理层的软件实现+文献综述
现代简约美式风格在室内家装中的运用
g-C3N4光催化剂的制备和光催化性能研究
上市公司股权结构对经营绩效的影响研究
浅析中国古代宗法制度
巴金《激流三部曲》高觉新的悲剧命运
C++最短路径算法研究和程序设计
江苏省某高中学生体质现状的调查研究
高警觉工作人群的元情绪...
中国传统元素在游戏角色...