摘要 为了更好的反映焊条原材料成分与其熔敷金属力学性能之间的映射关系,本论文对E4303和E5015碳钢焊条进行配方设计和堆焊试验,测定其熔敷金属的抗拉强度、屈服强度、延伸率、冲击功4项力学性能指标。分别采用RBF、BP、GA-BP三种神经网络方法建立由焊条原材料成分预测焊条力学性能的神经网络模型。用这三种神经网络模型对训练样本以外的试验数据进行预测。结果表明用GA-BP结合的计算方法所建立的神经网络模型预测焊条力学性能的平均绝对误差最小。E4303的屈服强度的平均相对误差达到9.83%、抗拉强度的平均相对误差达到13.85%、延伸率的平均相对误差达到13.47%、冲击功的平均相对误差达到9.41%;E5015的屈服强度平均的相对误差达到8.69%、抗拉强度的平均相对误差达到6.41%、延伸率的平均相对误差达到11.25%、冲击功平均的相对误差达到8.35%。7068
关键词 碳钢焊条 神经网络 力学性能 预测 遗传算法
毕业设计说明书(论文)外文摘要
Title Prediction Of The Deposited Metal Mechanical Properties of Carbon Steel Electrode Based on Genetic Neural Network
Abstract
To acquire a prediction model reflecting the relationship between primary materials formula and the deposited metal mechanical properties of electrodes,formula design and resurfacing welding experiments are made on E4303and E5015 carbon steel electrode.Mechanical properties indexes of deposited metal including tensile strength,yield strength,elongation percentage,impacting energy .Using the methods of RBF、BP、GA-BP neural network,three models for predicting electrode mechanical properties directly from primary material components are built respectively.The models are used to predict the experiment data except training samples. Results show that the prediction average relative errors of the modle for predicting electrode mechanical properties directly from primary material components base on GA-BP is the least.And the prediction average relative errors of tensile strength of E4303 is9.83%,the yield strength is 13.85%,the elongation percentage is 13.47%,the impacting energy is 9.41%; the prediction average relative errors of tensile strength of E5015 is 8.69%,the yield strength is 6.41%,the elongation percentage is 11.25%,the impacting energy is 8.35%.
Keywords carbon steel electrodes neural network mechanical properties prediction genetic algorithm
目 录
1. 引言 1
1.1 焊条成分预测力学性能的研究现状 1
1. 2 遗传算法、神经网络在预测应用的研究现状 1
1. 3 本课题研究内容 2
2. 碳钢焊条配方与力学性能分析 4
2. 1 酸性焊条配方与力学性能分析 4
2. 2 碱性焊条配方与力学性能分析 5
3. 碳钢焊条熔敷金属力学性能预测 7
3. 1 输入输出数据的确定 7
3. 2 试验数据归一化 10
3. 3 碳钢焊条熔敷金属力学性能预测神经网络模型 11
3.3.1 RBF预测模型 11
3.3.1.1 RBF预测模型结构建立 11
3.3.1.2 RBF网络训练 14
3.3.1.3 RBF网络预测 16
3.3.2 碳钢焊条熔敷金属力学性能BP预测模型 19
3.3.2.1 BP预测模型结构建立 19
3.3.2.2 BP网络训练 22
3.3.2.3 BP网络预测 25
3.3.3 遗传算法优化碳钢焊条熔敷金属力学性能BP预测模型 28
3.3.3.1遗传算法优化BP预测模型结构建立 28
- 上一篇:爆炸焊复合板界面特征和性能研究+文献综述
- 下一篇:碳钢焊条配方成分遗传神经网络预测
-
-
-
-
-
-
-
高警觉工作人群的元情绪...
NFC协议物理层的软件实现+文献综述
上市公司股权结构对经营绩效的影响研究
江苏省某高中学生体质现状的调查研究
巴金《激流三部曲》高觉新的悲剧命运
C++最短路径算法研究和程序设计
浅析中国古代宗法制度
现代简约美式风格在室内家装中的运用
g-C3N4光催化剂的制备和光催化性能研究
中国传统元素在游戏角色...