ABSTRACT The design and execution of ground investigation works for earthwork projects has become increasingly important as the availability of suitable disposal areas becomes limited and costs of importing engineering fill increase. An outline of ground investigation methods which can augment ‘traditional investigation methods’ particularly for glacial till / boulder clay soils is presented. The issue of ‘geotechnical certification’ is raised and recommendations outlined on its merits for incorporation with ground investigations and earthworks.21016
1. INTRODUCTION
The investigation and re-use evaluation of many Irish boulder clay soils presents difficulties for both the geotechnical engineer and the road design engineer. These glacial till or boulder clay soils are mainly of low plasticity and have particle sizes ranging from clay to boulders. Most of our boulder clay soils contain varying proportions of sand, gravel, cobbles and boulders in a clay or silt matrix. The amount of fines governs their behaviour and the silt content makes it very weather susceptible.
Moisture contents can be highly variable ranging from as low as 7% for the hard grey black Dublin boulder clay up to 20-25% for Midland, South-West and North-West light grey boulder clay deposits. The ability of boulder clay soils to take-in free water is well established and poor planning of earthworks often amplifies this.
The fine soil constituents are generally sensitive to small increases in moisture content which often lead to loss in strength and render the soils unsuitable for re-use as engineering fill. Many of our boulder clay soils (especially those with intermediate type silts and fine sand matrix) have been rejected at the selection stage, but good planning shows that they can in fact fulfil specification requirements in terms of compaction and strength.
The selection process should aim to maximise the use of locally available soils and with careful evaluation it is possible to use or incorporate ‘poor or marginal soils’ within fill areas and embankments. Fill material needs to be placed at a moisture content such that it is neither too wet to be stable and trafficable or too dry to be properly compacted.
High moisture content / low strength boulder clay soils can be suitable for use as fill in low height embankments (i.e. 2 to 2.5m) but not suitable for trafficking by earthwork plant without using a geotextile separator and granular fill capping layer. Hence, it is vital that the earthworks contractor fully understands the handling properties of the soils, as for many projects this is effectively governed by the trafficability of earthmoving equipment.
2. TRADITIONAL GROUND INVESTIGATION METHODS
For road projects, a principal aim of the ground investigation is to classify the suitability of the soils in accordance with Table 6.1 from Series 600 of the NRA Specification for Road Works (SRW), March 2000. The majority of current ground investigations for road works includes a combination of the following to give the required geotechnical data:
Trial pits
Cable percussion boreholes
Dynamic probing
Rotary core drilling
In-situ testing (SPT, variable head permeability tests, geophysical etc.)
Laboratory testing
The importance of ‘phasing’ the fieldwork operations cannot be overstressed, particularly when assessing soil suitability from deep cut areas. Cable percussion boreholes are normally sunk to a desired depth or ‘refusal’ with disturbed and undisturbed samples recovered at 1.00m intervals or change of strata.
In many instances, cable percussion boring is unable to penetrate through very stiff, hard boulder clay soils due to cobble, boulder obstructions. Sample disturbance in boreholes should be prevented and loss of fines is common, invariably this leads to inaccurate classification.
- 上一篇:PID控制器英文文献和中文翻译
- 下一篇:塑料注射模冷却系统英文文献和中文翻译
-
-
-
-
-
-
-
NFC协议物理层的软件实现+文献综述
中国传统元素在游戏角色...
现代简约美式风格在室内家装中的运用
高警觉工作人群的元情绪...
上市公司股权结构对经营绩效的影响研究
C++最短路径算法研究和程序设计
浅析中国古代宗法制度
江苏省某高中学生体质现状的调查研究
巴金《激流三部曲》高觉新的悲剧命运
g-C3N4光催化剂的制备和光催化性能研究