12 11 {, ,..., } f aa a where attributes 111 ~ aa are BT(Bend Type), ASBM(Anti-Spring Back Property of Material), T(Thickness), BR(Bend Radius), BA(Bend Angle), SD(Symmetry Degree), DLH(Distance between Bend Line and Hole), CH(Cliff Height), LDA(Linear Dimension Accuracy), ADA(Angular Dimension Accuracy Degree) and SQD(Surface Quality Degree). The meaning of some attributes is shown in Fig. 1. Fig. 1 Some attribute of a U type bend feature A stamping design case base E can be represented as: { | ( , ), 1,..., } ii iiE ee fd i n , where if is a bend feature and id is a related die design implementing the bend process. 3. Fuzzy-classification of cases Among all of examples, there are some similar stamping parts. Before mining rules from the case base, similar parts and their die designs should be partitioned into one cluster. Fuzzy classification approach is adopted in this paper to do the partition[7]. The procedure of fuzzy classification is pided into three stages: 1) Calculate a similarity matrix SM based on the similarity of every two cases. 2) Transfer the similarity matrix SM into an equivalent matrix. 3) Partition the cases into several clusters. 3.1 constructing a similarity matrix The similarity degree of every two cases can be represented by an N×N matrix SM (spq), where N is the case number of a case base and spq denotes the similarity between two cases ep and eq. Let ep=(ap1,ap2,
,ap11) and eq=(ap1,ap2,
,ap11) as described in section 2. The similarity degree of the two cases is defined as: 11() ()1(,) ( , )WWpq p q j pj qjjs see wsmfaa ¦ , (1) where smf() is the function to evaluate the similarity of two attributes and is defined as: . , (2) Where W=(w1,w2,
w11) is the weight vector for attributes. Some techniques like gradient decent can be used to automatically get optimized weights[8]. In this paper, we determine the weights manually as each attribute has its special importance and determining the weight manually brings a better accuracy of partition. The resulting similarity matrix for the cases in table 1 is: 1 0.42 0.44 0.4 0.82 0.31 0.33 0.350.42 1 0.31 0.3 0.35 0.38 0.34 0.350.44 0.31 1 0.93 0.33 0.25 0.25 0.280.4 0.3 0.93 1 0.33 0.22 0.23 0.240.82 0.35 0.33 0.33 1 0.32 0.36 0.380.31 0.38 0.25 0.22 0.32 1 00.33 0.34 0.25 0.230.35 0.35 0.28 0.24!#%#" .46 0.450.36 0.46 1 0.970.38 0.45 0.97 1§•¨¸¨¸¨¸¨¸¨¸¨¸¨¸¨¸¨¸¨¸¨¸¨¸©¹ 3.2 Fuzzy classification The technique of fuzzy classification is applied in this method to partition the cases into several clusters. This approach first transforms the similarity matrix to an equivalent matrix. According to Eq. 1 and Eq. 2, the similarity matrix is symmetric and reflexive because, for any spq, sii=1 and sij=sji (ij). To become an equivalent matrix, the similarity matrix should be transformed to be transitive by computing the transitive closure[7]. After the transformation, a Ȝ-matrix of the equivalent matrix is calculated and cases are partitioned into several clusters. Cases that are approximately equivalent to each other are considered within the same cluster. The clustering algorithm is described as follows. step 1. Let 1() pq SM SM SM s D , where max (min( , )) pq k pk kq s ss . 1111 1 j=1 and ( , ) 0 j=1 and 2*min( , ) j 1pqpj qj p qpj qjpj qjaasmf a a a aaaaa° °° z ®°° z°
- 上一篇:案例检索算法冲压模具英文文献和中文翻译
- 下一篇:JSP的技术发展历史英文文献和中文翻译
-
-
-
-
-
-
-
NFC协议物理层的软件实现+文献综述
中国传统元素在游戏角色...
浅析中国古代宗法制度
上市公司股权结构对经营绩效的影响研究
g-C3N4光催化剂的制备和光催化性能研究
巴金《激流三部曲》高觉新的悲剧命运
江苏省某高中学生体质现状的调查研究
高警觉工作人群的元情绪...
C++最短路径算法研究和程序设计
现代简约美式风格在室内家装中的运用