These 3.3. Nanoproducts under shockIt involves the production of ultrafine materials (metals,ceramics, mixtures) by explosive compaction techniques.The nanopowders, synthesized by explosion, and mixtures applications include wires for electrical power transmission,electrical switches for measuring technology and HTS con-ductors for electrical machines, e.g. rotating synchronousgenerators, levitated bearings and fault current limiters. Theycan lead to the level-off of the electricity and they significantly A.G. Mamalis / Journal of Materials Processing Technology 161 (2005) 1–9Fig. 7. Process flow diagram for the fabrication of high-Tc superconducting machines [2]. 7 Optimization of the processing parameters is, therefore,necessary to allow for the fabrication of these sound compo-nents, which process their superconducting properties and,therefore, modeling and simulation of the processes and thecompaction mechanisms are on hand [9], see Fig. 10.4.2. Fabrication of steel-sheathed MgB2superconducting wires and tapes To overcome the problems mentioned above, dynamicpowder-compaction techniques, e.g. explosive and electro-magnetic compaction, are used for fabricating steel sheathedMgB2 wires and tapes. The main reason of applying thesetechniques is that the dynamic treatment of powders does notmerely consist of a simple compression as in conventionalcompaction processes, but it involves a shock wave passingthrough the powder body resulting in useful changes in thestate of the starting material. The methodology pertaining tomanufacturing of such superconductors is shown in Fig. 11.4.3.
Fabrication of superconducting coated conductorsA technique for fabricating superconducting wires andtapes is to deposit HTS films on metallic substrates. Super-conducting ceramics has been deposited on polycrystallinemetal substrates where the superconducting materials are c-axis oriented but not aligned in plane. For achieving highcritical currents and transport currents, the superconductin
【摘要】本文报道的一些活动的实验室制造技术的制造工程系,聚焦到我国一些最近的趋势和发展先进制造业的先进材料,主要强调长期与希腊–乌克兰–俄罗斯–匈牙利等科学家合作,还与国际参与全球,在主要的研究和重要工程项目,从工业,科研和学术观点:超精密工程与纳米技术和净形制造陶瓷高温超导体。
【关键词】超精密加工制造工程;纳米技术。
1. 简介:
在高质量的零件制造成形中,金属去除加工和精密制造主要作用是阻止空余的尺寸和形状精度,表面完整性,和功能特性的产品。发展制造工程与发展趋势是小型化并伴有连续的持续发展。压痕机加工零件的精确度,见图1(转载)。
两者的主要产品是小型化的趋势,运用的是超精密加工与纳米技术。前者是进行的机床具有很高的交流—精度,而后者也采用了新的先进方法,使原子操纵进行所谓的“自下而上”运动,从而在机器制造中,组合原子粒子。纳米技术是德内德的制作设备与原子或分子尺度精确的确保,但它还包括所有设备的尺寸小于100纳米。另一方面,超精密加工,设备德内德在这些过程中,应尽可能高的尺寸精度。
具有相关的超导现象,即一般材料在温度接近绝对零度的时候,物体分子热运动几乎消失,材料的电阻趋近于0,此时称为超导体。见图2,介绍了从参考文献[ 2 ]。在1986年高温超导和高温超导合成材料的超导电性的发现,随即产生了非常广泛的研究,高温超导合成材料具有液氮以上的沸点,利用工程应用,从电子传感器的旋转电机发电机和纳米级薄算法公里—长导线和线圈。因此,设计和精密制造超导元件,从最初的合成粉末,发展到目前对最大的工业有举足轻重的作用影响。
- 上一篇:深变压边力的优化英文文献和中文翻译
- 下一篇:连杆的可靠性三维有限元英文文献和中文翻译