菜单
  

    Proof: Let X* minimize the quadratic function Q(X). Then

                  Q(X*)=B+A X*=0                        (6.32)

    Given a point X  and a set of linearly independent directions S ,S ,…,S ,constants  can always be found such that

                   X*= X +                            (6.33)

    where the vectors S ,S ,…,S  have been used as basis vectors. If the directions S are A conjugate and none of them is zero, the S , can easily be shown to be linearly independent and the  can be determined as follows.

    Equations (6.32) and (6.33) lead to

               B+A X +A( )=0                       (6.34)

       Multiplying this equation throughout by S ,we obtain

                  S  (B+A X )+ S A( )=0               (6.35)

       Equation (6.35) can be rewritten as

                  (B+A X ) S + S A S =0                  (6.36)

    that is, 

                   =-                           (6.37)

    Now consider an iterative minimization procedure starting at point X ,and successively minimizing the quadratic Q(X) in the directions S ,S ,…,S ,where these directions satisfy Eq. (6.27). The successive points are determined by the relation

                  X =X + S ,  i=1 to n                     (6.38)

    where  is found by minimizing Q (X + S )so that S  Q(X )=0 is equivalent to  =0 atY= X 

                          = 

    where y  are the components of Y= X  

                  S  Q(X )=0                              (6.39)

    Since the gradient of Q at the point X , is given by 

                   Q(X )=B+A X                           (6.40)

    Eq. (6.39) can be written as

                  S {B+A(X + S )}=0                        (6.41)

    This equation gives

                  =-                              (6.42)

    From Eq. (6.38), we can express X  as

                 X =X +                                 (6.43)

    so that

                       X AS = X AS + 

                         = X AS                               (6.44)

    using the relation (6.27). Thus Eq. (6.42) becomes

                  =-(B+AX )                           (6.45)

    which can be seen to be identical to Eq. (6.37). Hence the minimizing step lengths are given by   or   . Since the optimal point X* is originally expressed as a sum of n quantities   which have been shown to be equivalent to the minimizing step lengths, the minimization process leads to the minimum point in n steps or less. Since we have not made any assumption regarding X  and the order of S ,S ,…,S , the process converges in n steps or less, independent of the starting point as well as the order in which the minimization directions are used.

  1. 上一篇:JSP应用程序框架英文文献和中文翻译
  2. 下一篇:牛顿法英文文献和中文翻译
  1. 薄壁行星齿轮的变形体动...

  2. 超高速行星齿轮组合中内...

  3. 减速起动机行星轮销轴压...

  4. 双曲柄环板式针摆线齿轮...

  5. g-C3N4光催化剂的制备和光催化性能研究

  6. 浅析中国古代宗法制度

  7. 巴金《激流三部曲》高觉新的悲剧命运

  8. 江苏省某高中学生体质现状的调查研究

  9. 现代简约美式风格在室内家装中的运用

  10. 中国传统元素在游戏角色...

  11. 高警觉工作人群的元情绪...

  12. C++最短路径算法研究和程序设计

  13. 上市公司股权结构对经营绩效的影响研究

  14. NFC协议物理层的软件实现+文献综述

  

About

优尔论文网手机版...

主页:http://www.youerw.com

关闭返回