tion(Table1).AllPVDhardcoatingsofthegroupA,B,Dweredepositedbycathodicvacuumarcevaporation,groupC by a hybrid process of vacuum arc evaporation andmagnetron sputtering [16]. Group A summarizes mono-layer coatings with different compositions of AlTiN withanincreasingamountofaluminumfromAlTiN1toAlTiN3 (Al Ti N, Al Ti  N, Al Ti N). Group B containsmonolayerAl  Cr N-coatingswhichdifferintheirresid-33ual stress state. The coating with compressive residualstress is termed as ‘‘AlCrN C’’ and these with tensileresidual stress as ‘‘AlCrN T’’. AlTiVXN is a dual layerwithahybridAlTiVN/AlTiN-coatingandatoplayerVXN(thickness 1lm).  The TiAlSiXN-coatings in group Dexhibit different layer architectures, a dual layer withtoplayerTiSiXN(thickness2.2lm)andamultilayerwith10 alternating TiSiN–AlTiN layers. Group E contains aCVD coating with a ceramic toplayer Al O
(thickness2lm)andTiCN/TiNinterlayers(thicknessTiCN3.5lm,thicknessTiN7.6lm).Coatingthicknesswasmeasuredbycalottegrinding.Thedeterminedhardnessofeachcoatingistheaverageoffivemeasurementswith2000lNusingaBerkovich indenter with  80nm  tip-radius, 5s  forceincreaseanddecreasetimeandadwelltimeof3s.DepthresolvedscatteringvectorresidualstressmeasurementsofthecoatingshavebeenperformedonaGEX-raydiffrac-tometertypeSeiffertXRD3003etaequippedwithCoKaradiation(30kV,40mA)anda2mmdiametercollimator.  Prod.Eng.Res.Devel.(2016)10:147–155149Table3 Cuttingparametersreflection coneSB42CrMo4Ti–6Al–4VPBCuttingspeedv  (m/min)c20060Feedf(mm)0.21.00.11.0Depthofcuta   (mm)pchemicalreactionsareresponsibleforrapidlyprogressingflankwear[21].180°-2The experiments were conducted with tools CNMG120412MSandsubstrateK313.Rakeandclearanceanglewere set to 5°. The cutting parameters were adjustedaccordingtoTable3.reflectingnet planeshklWear measurements were carried out using a digitalmicroscope (Keyence VHX600). Detailed wear analysesfor selected tools are carried out by SEM. The criteria oftoollifeareaflankwearlandofVB=200lm,toolfailuredue to crater wear or a tool life of t =10min   forc42CrMo4andt  =20minforTi–6Al–4V.Processforcescwere measured using a three component dynamometerKistlerType9121.Bre/37253 ©IFWP  , P , P3specimen coordinate system12PBprimary beam3 ResidualstressstateofthecoatingsSB2secondary beamBragg angleThescatteringvectormethodisbasedoncalculatedstres-gNhklscattering vectorsesofthelatticeplaned   (hkl)forthestrain-freedirection.0WithacontinuousreductionofX-raypenetrationdepthina geometrical way to the point of zero, depth resolvedinformation of residual stresses in thin films can be pro-vided. For measurements applying the scattering vectormethod,aspecial5-axesdiffractometerisrequired,whichallows a rotation of the specimen in reflection positionaround the scattering  vector g/w. Hereby, the anglebetweentheprimarybeam(PB)andthespecimensurfaceis varied, which influences the X-ray penetration depthnormal of netplanehkltilting anglerotation angle by sample normalrotation angle by scattering vectorFig.1 Scatteringvectormethod[5]is (hkl)=(200) and group E (hkl)=(300). A change inthe ratio of Al and Ti in group A leads to no significantalteration of the residual stress depth distribution. With adifferent process pressure and BIAS voltage the residualstressesshiftfromcompressivetotensilestressesingroupB. Depth resolved residual stress measurement of a mul-tilayer PVD-coating with the scattering vector method isshown in group D (TiAlSiXN  multilayer). The peak(hkl)=(200)  of the TiSiN layer and the AlTiN layersuperimposes. Thus, the selected peak for stress determi-(Fig.1)[15].Withthediffractionelasticconstantss     (hkl)1and‘s (hkl)andtheinterpolatedlatticeplaned     Laplace2þwstresseswiththedepthinformationsparalleltothesurfacearedeterminedto[15,22]12FIIðhkl;sÞ¼  = s ðhklÞsin wþ2s ðhklÞð1Þð2Þ222r ðsÞ¼½dþðhkl;sÞÀd  ðhklފ=½d ðhklÞF ðhkl;sފIIw00IIThecompositionofcoatingslimitsthemaximumX-raynationsofthealternatingTiSiN–AlTiNlayersispenetrationdepth.Duetotheabsorptioncoefficientsofthecoating composition the penetration depth is smaller thanthecoatingsthickness.(hkl)=(200).  The  result without  significant offsetsbetween the measured points proves the possibility tomeasure overall residual stresses in multilayer coatingswiththescatteringvectormethod.Theresidualstressdepthdistributionsofthecoatingsarepresented in Fig.2  for the coating groups A–E. TheselectedpeakforstressdeterminationsofthegroupsA–DDepth resolved residual stresses of coatings and thestress state near surface and near  substrate enable a123   150Prod.Eng.Res.Devel.(2016)10:147–155group Adistance from surface2group Bcrater wearflank wearrake facedistance from surfacerake face3000  01µm4012µm4MPa10000AlTiN 3AlCrN TAlTiN 1flank face200 µmflank face200 µm-1000-2000-3000-4000-5000-6000-7000chippingAlTiN 2rake facerake faceadhesionAlCrN Cnear-surfacenear-substrateflank faceflank face200 µm200 µmgroup C, Dgroup Edistance from surface1       2                 4Ri/79927 ©IFWdistance from surface3000  012µm40µmFig.3 WearformsMPa10000Residualstressinthecoatinginteractswithcompositionandhardnessofthecoating.Usingamodifiedcompositionwillchangethesetwoparametersbecauseofchangedlat-ticeconstantsandadistortedlattice.Variedparametersinthecoatingprocess,forexampleBIASvoltageorprocesspressurewithconstantcompositionofthecoating,changethe depth distribution of coatings residual stresses fromsurface to substrate. Because of these interactions, theperformanceof coatingsin cutting experiments cannot beascribedtoonefactor.Instead,thecombinationofresidualstress, composition and hardness of coatings determinetheir performance in machining. A direct correlation
上一篇:YZ12振动压路机英文文献和中文翻译
下一篇:动态特征测量系统英文文献和中文翻译

抗震性能的无粘结后张法...

汽车内燃机连杆载荷和应...

干涉配合轴的应力分析英文文献和中文翻译

塑料盖镜片残余应力的消...

弯曲处的残余应力模型英文文献和中文翻译

金属镶件的注塑件脱模后...

骨应力分布的有限元分析英文文献和中文翻译

张洁小说《无字》中的女性意识

麦秸秆还田和沼液灌溉对...

互联网教育”变革路径研究进展【7972字】

网络语言“XX体”研究

ASP.net+sqlserver企业设备管理系统设计与开发

新課改下小學语文洧效阅...

老年2型糖尿病患者运动疗...

LiMn1-xFexPO4正极材料合成及充放电性能研究

我国风险投资的发展现状问题及对策分析

安康汉江网讯