A natural development of the output error model is to further the properties of the output error. This can be done by assuming that the true process is

vector ϕ(t) and a parameter vector θ Such a model is called

B(q)

y(t) =

C(q)

a linear regression in statistics and the vector ϕ(t) is called regression vector. Fig. 2 displays the ARX modeled data versus the actual data.

where

u(t) + e(t) (6)

F (q) D(q)

3.2  ARMAX modeling

F (q) = 1 + f1q−1

+ . . . + fnf q

−nf

D(q) = 1 + d1q−1 + . . . + d

q−nd

The basic problem  with  the  ARX  model  is  the  lack of adequate freedom in describing the properties of the disturbance term. We could add flexibility to that by describing the equation error as a moving average of white noise. This gives the model:

y(t) + a1y(t − 1) + . . . + ana (t − na)

= b1u(t − 1) + . . . + bnb u(t − nb) + e(t) (4)

e(t) + c1e(t − 1) + . . . + cnc e(t − nc) It can be rewritten as

A(q)y(t) = B(q)u(t) + C(q)e(t)

where

In a sense, this is the most natural finite-dimensional parameterization and the transfer functions G and    H  are independently parameterized as rational functions  [9]. In this case the parameter vector is given by

θ = [b1 . . . bnb  f1 . . . fnf c1 . . . cnc  d1 . . . dnd ]

Fig. 4 displays the BJ modeled data versus the actual data.

3.4 State Space model

In state-space form, the relationship between the input, noise and output signals is written as a system of first order differential or difference equations using an auxiliary state vector x(t). For  most physical systems it is  easier to construct models with physical insight in   continuous

and

C(q) = 1 + c1q−1 + . . . + c

q−n

time than in discrete time, simply because most laws of physics are expressed in continuous time. This means that the modeling normally leads to a representation

y1. (sim)

8

y1. (sim)

8

6 6

4 4

2 2

0 0

−2 −2

−4 −4

−6 −6

100 200 300 400 500 600 700 800

Time (sec)

100 200 300 400 500 600 700 800

Time (sec)

Fig. 4. BJ modeled data (- - -) v/s actual data   (—)

x˙ (t) = F (θ)x(t) + tt(θ)u(t) (7)

Here F and tt are matrices of appropriate dimensions (n× n and n× m, respectively for an n-dimensional system

Fig. 5. State-Space modeled data (- - -) v/s actual data (—)

. 1.0324 −0.1613 .

上一篇:对热流道系统注塑工艺英文文献和中文翻译
下一篇:数控车床附件的研究英文文献和中文翻译

机械手系统英文文献和中文翻译

船舶运动仿真系统英文文献和中文翻译

新能源空调系统设计英文文献和中文翻译

齿轮平行转子系统英文文献和中文翻译

太阳能热泵集热器英文文献和中文翻译

蜂窝移动通信系统英文文献和中文翻译

模糊PLC系统的伺服机构英文文献和中文翻译

安康汉江网讯

麦秸秆还田和沼液灌溉对...

老年2型糖尿病患者运动疗...

张洁小说《无字》中的女性意识

互联网教育”变革路径研究进展【7972字】

网络语言“XX体”研究

LiMn1-xFexPO4正极材料合成及充放电性能研究

ASP.net+sqlserver企业设备管理系统设计与开发

新課改下小學语文洧效阅...

我国风险投资的发展现状问题及对策分析