2.2.   Particle model

of 6:7

· 105

m2=kg.

research of this process. To solve the reaction–diffusion equation inside the catalyst pellet, a pore structure model and a diffusion model are needed. Often used pore structure models are the micro- and macro pore model of Wakao and Smith (1962), the random pore model of Johnson (1965), the grain model of Szekely and Evans (1971). More recently, a more detailed and realistic three-dimensional pore network model has been proposed by Rieckmann and Keil (1999). The diffusion fluxes are usually mod- elled with the dusty gas model, Maxwell–Stefan model, Wilke and Wilke-Bosanquet models (Solsvik and Jakobsen, 2013). One may refer to the works of Solsvik and Jakobsen (2012a) for a detailed summary of different diffusion models. For catalyst pellet con- taining bi-modal pore size distribution, the micro- and macro pore model of Wakao and Smith (1962) with the Wilke formular can  be a good option for practical reaction engineering calculations (Hegedus, 1980).

2. Mathematical modeling

2.1. Reaction kinetics

In this work, the micro- and macro pore model of Wakao and Smith (1964, 1962) was applied which was specifically    developed

Fig. 1.  Triangle reaction network for n-butane oxidation (Wellauer et al., 1986).

Table 1

Kinetic parameters for partial oxidation of n-butane taken from Guettel and Turek (2010).

The triangle (three-reaction) network as shown in Fig. 1 was used in this work which includes the main reaction of n-butane to maleic  anhydride,  total  oxidation  of  n-butane  to  carbon  oxides

(CO2    and  CO)  and  consecutive  MAN  oxidation  to  CO2    and   CO

Y.  Dong et al. / Chemical Engineering Science 142 (2016)   299–309 301

for catalyst pellets containing bi-modal pore structure. In this model, the pore structure of the catalyst pellets is described by four parameters: mean macro-pore diameter dM, mean micro-pore

Table 3

Properties of  the catalyst pellet  (Guettel and Turek,   2010).

Property Symbol Value Unit

diameter dm, macro-pore porosity εM  and micro-pore porosity  εm.           

The specific surface area (surface per catalyst weight) Sg and pellet density ρpellet are directly related to the pore structure and can be evaluated as follows (Hegedus,  1980):

ρpellet  ¼ ρsolidð1— εtotalÞ;     εtotal  ¼ εM þεm ð9Þ

Combining Eqs. (8) and (9), one   obtains:

In the model of Wakao and Smith (1964, 1962), both Knudsen diffusion and molecular diffusion are considered and the effective diffusivity of each species is expressed   as

ε2    1þ3εM Þ

where Deff ;i is the effective diffusivity of each species, λpellet is the effective thermal conductivity of the pellet, ζ is the  dimensionless

radial cylindrical coordinate of the pellet. In this study, the con- servation equations were only solved along the radial coordinate

Deff ¼ DM ε2

1— εM

Dm

上一篇:注射成型过程中的聚丙烯填充物英文文献和中文翻译
下一篇:模拟列车断裂性能的工具英文文献和中文翻译

数控机床制造过程的碳排...

新的数控车床加工机制英文文献和中文翻译

300兆瓦循环流化床锅炉受...

护理床及其轮椅装置英文文献和中文翻译

可重构机床设计英文文献和中文翻译

喷动床装置的气动特性英文文献和中文翻译

专用机床的设计英文文献和中文翻译

安康汉江网讯

我国风险投资的发展现状问题及对策分析

ASP.net+sqlserver企业设备管理系统设计与开发

LiMn1-xFexPO4正极材料合成及充放电性能研究

新課改下小學语文洧效阅...

互联网教育”变革路径研究进展【7972字】

老年2型糖尿病患者运动疗...

麦秸秆还田和沼液灌溉对...

张洁小说《无字》中的女性意识

网络语言“XX体”研究