Fig. 2.  Graphic illustration of the simulation  set-up.

Momentum balance:

In the first part of this section, the obtained reactor profiles and pellet profiles simulated are discussed. A reference case was defined  with  the   pellet   pore   structure   parameters   set   to: εM ¼ εm ¼ 0:25,  dM ¼ 100 nm,  dm ¼ 1 nm.  The  operational  para-

meters of the reactor are summarized in Table   5.

Fig. 3 shows the typical velocity field and temperature profile inside  the  fixed-bed  for  n-butane  oxidation.  The  flow  field pre-

Continuity equation:

∇ · .ρf u. ¼ 0 ð25Þ

Eq. (24) is the extended-Brinkman equation which is recom- mended for use of calculating velocity fields in fixed-bed reactors instead of using the conventional plug-flow assumption (Hunt and Tien, 1988). The reactor wall effects on the flow in fixed-bed reactors, especially with small reactor diameter to particle dia- meter ratio (dR =dp), is included in the Brinkman equation by introducing the radial function of the porosity εbedðrÞ. The radial porosity function  used in this  work is as follows (Tsotsas,   2010):

dicted by the extended Brinkmann equation together with the radial porosity profile and Ergun correlation shows maximum values in the near-wall region and zero value at the wall (Marín et al., 2010). This is caused by the high porosity of the random packing in the vicinity of the wall and no-slip boundary condition applied at the wall. Detailed flow calculations, instead of using conventional plug-flow assumption, are important in this  study due to the strong interconnection between the flow and the   heat

and mass transport. This coupling is described by the ‘λr  model’ of

Winterberg et al. (2000) applied in this work. For a strong exo- thermic reaction in wall-cooled fixed-bed reactors with low dR =dp ratio, the accurate prediction of the hot spot temperature is of vital

importance  (Anastasov,  2002).  This  is  the  reason  why  a     two-

Table 4

Boundary conditions  applied  to the  reactor model.

a ¼

0

— 1;    b ¼ 6:0 ð27Þ

z ¼ 0; 8 r : ci  ¼ ci;0 T ¼ T 0

.!u .     u0

The porosity of a  cylindrical packing  in a  infinite bed  ε0  is   calcu-

.   . ¼

lated according to Zou (1996) to be 0.32. The inertia resistance in the bed is described by the Ergun hydraulic permeability KE as (Marín et al.,  2012):

The  set  of  effective  heat  and  mass  transport  parameters  were

Operational parameters used in this work.

calculated  following  the  work  of  Winterberg  et  al.  (2000)   and

 uðr ¼ 0Þf  R    r  D 29

ð  —  Þ  AB ð   Þ

Parameter Symbol

上一篇:注射成型过程中的聚丙烯填充物英文文献和中文翻译
下一篇:模拟列车断裂性能的工具英文文献和中文翻译

数控机床制造过程的碳排...

新的数控车床加工机制英文文献和中文翻译

300兆瓦循环流化床锅炉受...

护理床及其轮椅装置英文文献和中文翻译

可重构机床设计英文文献和中文翻译

喷动床装置的气动特性英文文献和中文翻译

专用机床的设计英文文献和中文翻译

安康汉江网讯

我国风险投资的发展现状问题及对策分析

ASP.net+sqlserver企业设备管理系统设计与开发

LiMn1-xFexPO4正极材料合成及充放电性能研究

新課改下小學语文洧效阅...

互联网教育”变革路径研究进展【7972字】

老年2型糖尿病患者运动疗...

麦秸秆还田和沼液灌溉对...

张洁小说《无字》中的女性意识

网络语言“XX体”研究