A common artifact that is observed with figure images is that objects of interest will often be illuminated in a way that causes a . curve of background-matching  intensities  along  the  interior of their projected area.  This  intensity  gradient artifact also occurs at regional borders within an inpidual object of interest. The result of figure image segmentation when this artifact occurs is a pair of segments whose bounding boxes overlap (see Fig. 2). Since these curves are usually not parallel to an axis for their entire length,  bounding  box pairs caused by this phenomenon almost always overlap. Thus, our system merges overlapping figure segments into a single segment. This merging of figure segments can sometimes  have the additional   benefit

of overcoming the occlusion of an object of interest by  a small  obstruction  (see Fig. 3).

2.5. Segmentation optimizations

2.5. 1. Segmentation subsampling. As stated thus far, the figure/ground framework provides  a  relatively fast form of object detection. However, the detection problem’s critical real-time nature is such that we would still like to identify ways in  which  the detection performance can  be  further  improved. Such an improvement is possible through the use of subsampling. Because the segmentation algorithm is currently implemented in software, each figure pixel must be considered sequentially. The subsampling optimization  improves  performance  by  considering

 

(a) (b)

(a) Two intersecting figure segments before they are merged

(b) The figure segment that results from their merging

Fig. 2. Merging of figure segments.

 

(a) (b)

(a) An occluding object (a strip of paper)

is placed over a target (a knife).

(b) Ground, current, and figure images are maintained as before.

(c) The two ends of the knife produce bounding boxes that overlap. As a result, a single figure segment is pro- duced for the target despite the occlusion.

Fig.  3.  Overcoming  an  occlusion  through  figure  segment merging.

only  every  few  pixels  instead  of  every  inpidual   between   these   two   share   that   same   state.   As a pixel. We make the assumption that if a pixel has the   result,  this  optimization  causes  object  detection    to same figureJground  state as the previously considered   fail   when   the   objects   approach   their  minimally pixel   (in   either   dimensions),   then   all   the   pixels         acceptable  height  or width. The failure  is due to the

fact that they are being pruned  away  by  the  • Figure segmentation  is only applied  to areas  where segmentation  process  (see Section  2.4)  in situations it is expected  to provide  results (i.e. in  intrisically when   the   consideration   of   each   inpidual pixel active areas or in areas currently  near an object   of would   have   resulted   in   an   acceptable   height or

上一篇:草莓自动包装系统英文文献和中文翻译
下一篇:剪叉式升降台驱动的解决方法英文文献和中文翻译

双足步行机器人英文文献和中文翻译

脑电图像P300机器人手臂运...

机器学习英文文献和中文翻译

机器人运动模糊逻辑控制英文文献和中文翻译

机器人控制系统英文文献和中文翻译

水下机器人AUV叶片冷锻钉...

机器人学入门力学与控制英文文献和中文翻译

互联网教育”变革路径研究进展【7972字】

LiMn1-xFexPO4正极材料合成及充放电性能研究

安康汉江网讯

ASP.net+sqlserver企业设备管理系统设计与开发

我国风险投资的发展现状问题及对策分析

老年2型糖尿病患者运动疗...

新課改下小學语文洧效阅...

麦秸秆还田和沼液灌溉对...

张洁小说《无字》中的女性意识

网络语言“XX体”研究