g ¼ 2a þ b=2 — v=2 þ 2d þ e=2 — /=2 i ¼ a þ b=2 — v=2 þ d þ e=2 — /=2
Substituting
(37)
am
qa lb Þðvv Þðqd Þðle Þðv/Þðr—a—b—d—e Þ
ad / ð VÞð V V
L L L
×ðd2aþb=2—v=2þ2dþe=2—/=2
aþb=2—v=2þdþe=2—/=2
Þ ð38Þ
and then collecting terms with the same power-law exponents gives us the following
am
。q d2g。a l
d1=2g
1=2!b !v
V
。q d2g。d
e V L e
ad / r r d g1=2 r
e
Figure 3。 Vapor-side and liquid-side composition cor-
rection factors appearing in Eq。 25 for hHETPi。
l d1=2g
× r
1=2!e v !/
de g1=2
ð39Þ
kxde b c or
ShL ¼ c D
¼ ALReLScL (32)
1= 1 !b
These are the expressions for the mass-transfer coefficients that we will use。
a
/ ðBoV
d
2 =2
a V e
Þ r
。pffiFffiffirffiffiffiffiffi。v
ðBoLÞ
Next, consider the fractional mass-transfer area, am/ad。 Let
1=2
1=2!e
us assume that the fractional mass-transfer area in a packed tower is a function of the following physical quantities
lLde g
× r
。pffiFffiffirffiffiffiffiffi。/ ð40Þ
am
Fðq ; l
; v ; q ; l ; v ; r; d ; gÞ
These dimensionless groupings are less well known than
ad ¼
V V V L
m m
L L e
m l
the Reynolds number, Weber number, and Froude number
l
q ! l3 l ! l — t r ! t2 v ! t de ! l g ! t2
(33)
ReV ¼
devVqV lV
deqLv2
ReL ¼
devLqL lL
v2
Because there are nine quantities with physical dimensions
and three units of dimension (mass, length, and time), the