where‡
þ G R xt dx
xb xð1—xÞ ln½aðxÞ]
aðxÞ
ð23Þ
kx ¼ KxðvL; qL; lL; cL; DL; deÞ (30)
In each case, we have assumed that there are seven quan- tities with physical dimensions。 Further, we note that there are four units of dimension in the relationships above (mass,
mðxÞ ¼
ð1 þ ½aðxÞ— 1]xÞ
(24)
length, time, and mole number)。 By the Buckingham P theo- rem, a relationship exists among three dimensionless group- ings。25 It is straightforward to show in each case that the Sherwood number can be taken to depend on the Reynolds
*It is less disturbing to do this with a packed column where it is easier to imag-
ine the composition being continuous with packed depth。
†See Appendix A。
‡We have ignored terms involving da/dx in the derivation of Eq。 24 from Eq。
16。 For the standard distillation systems studied in most laboratories, the variation
number and the Schmidt number。
kyde m n
of the relative volatility with composition is small, and the neglect of these terms has negligible impact。 See Appendix B。
ShV ¼
V V
¼ AVReV ScV (31)
fractional mass-transfer area will be a function of six dimen- sionless groupings。 In one method for finding the dimension- less groupings, we assume that the functional form for am/ad is a power law。 Doing so allows us to write down a set of linear equations relating the power-law exponents on the var- ious physical quantities。
am b v d
e / c g i
ad /
ðqVÞaðlVÞ ðvVÞ ðqLÞ ðlLÞ ðvLÞ ðrÞ ðdeÞ ðgÞ
(34)
a b。 。v d
e。 。/
c 。 。i
m0l0t0 ¼ 。 。 。 m 。
l 。 m。 。 m 。 l
。 m。 l
ðlÞ
l3
Thus
l — t
t l3
l — t t t2
t2
(35)
0 ¼ a þ b þ d þ e þ c ðmassÞ 0 ¼ —3a — b þ v — 3d — e þ / þ g þ i ðlengthÞ 0 ¼ —b — v — e — / — 2c — 2i ðtimeÞ
(36)
Some manipulation allows us to express c, g, and i in terms of a, b, v, d, e, and /。
c ¼ —a — b — d — e