3。4。 Optimization algorithm: hybrid Taguchi-random coordinate search algorithm

To find the optimal value of each step, an optimization algorithm is required。 The objective function used in this paper is com- posed of an obvious equation, but it is too complex to analyze the function analytically。 This type of function is treated as a black- box function [20]。 To optimize the black-box function, derivative-free optimization (DFO) algorithms such as genetic algorithms (GA), simulated annealing (SA), or pattern search optimization (PSO) are applied [21]。 However, these methodologies are limited in that they sometimes cannot find global optimal points。 Rios and Sahinidis [21] suggest that a better solution to this kind of problem may be a combination of two algorithms。 Thus, the hybrid Taguchi-random coordinate search algorithm (HTRCA) is ap- plied [22]。 HTRCA combines the Taguchi method (TM) with the random coordinate search algorithm (RCA) to find the optimal solution  of  the  objective functions。

4。 Case studies

This section analyzes a number of cases that were investigated with the developed algorithm to validate the method。 For a performance comparison, the conventional method that minimizes  tracking error  is used。 The input  data set of the  given  points and their intervals is controlled for unprejudiced comparison。 The method minimizes the tracking error of the given data set and finds the optimal mechanism。 Moreover, the method developed in this paper derives the optimal mechanism to minimize the objective function with the reference slope and its change in angle of slope, which are estimated from the given data set。

4。1。 Case 1–1: type-I (equal intervals)

The  desired trajectory  of  the first  case is a mathematical  ellipse described  as follows:

1000 coupler points were chosen to identify the optimal solution that can trace an ellipse with a = 100 and b = 50。 Because the purpose of this case study is to find the shape and size of the trajectory, the position variables x0 and y0 are not needed。 Therefore, for this problem,

Target curve:

Cx;D  ¼ 100 cos θ ð11Þ

Cy;D ¼ 50 sin θ ð12Þ

θ ¼ i=1000; i ¼ 1; …; 1000

Constraint conditions: Desired shape: Type-I

Xsize ∈ ð 0; 500 ]

½ l2      l3      l4 ]=l1 ∈ ð 0; 10 ]

。 lcx       lcy 。=l1  ∈ ½—10; 10]

4。2。 Case 1–2: type-I (variable intervals)

This case is also an ellipse described by Eq。 (10)。 In some real situations, the velocity of each section needs to be considered。 Therefore, the velocity profile of the coupler points is modified from the first case。 The other conditions are the same。 For this problem,

Target curve:

Constraint conditions: Desired shape: Type-I

Xsize ∈ ð 0; 500 ]

½ l2      l3      l4 ]=l1 ∈ ð 0; 10 ]

。 lcx       lcy 。=l1  ∈ ½—10; 10]

4。3。 Case 2–1: type-III (equal interval)

The desired trajectory of case 2 looks like a crescent, as shown in Fig。 7 (A)。 The desired velocity in all sectors is constant。 For this  problem,  the target  curve  and constraint conditions  are  as follows。

Target curve:

The value of parameter composing the shape of the desired trajectory is demonstrated in Fig。 7(A)。 1000 coupler points  in  total are  positioned equidistantly。

上一篇:双位错叶片涡轮桨搅拌釜英文文献和中文翻译
下一篇:风冷双回路螺杆冷水机组英文文献和中文翻译

模糊PLC系统的伺服机构英文文献和中文翻译

曲柄滑块机构英文文献和中文翻译

连杆机构英文文献和中文翻译

双曲柄环板式针摆线齿轮...

深海调查绞车牵引机构和...

并联组合凸轮机构设计英文文献和中文翻译

锥型磨进给机构机械设计英文文献和中文翻译

安康汉江网讯

互联网教育”变革路径研究进展【7972字】

老年2型糖尿病患者运动疗...

新課改下小學语文洧效阅...

张洁小说《无字》中的女性意识

我国风险投资的发展现状问题及对策分析

网络语言“XX体”研究

ASP.net+sqlserver企业设备管理系统设计与开发

麦秸秆还田和沼液灌溉对...

LiMn1-xFexPO4正极材料合成及充放电性能研究