8-2 OPERATONAL CONSIDERATIONS。 Batteries generate a small amount of hydrogen and other gases while they are being charged or discharged。  Hydrogen build- up could lead to an explosion。 Provide ventilation to keep the hydrogen concentration below 25 percent of the LEL (LEL = 4 percent) to prevent an accumulation of an explosive mixture。

8-3 DESIGN CRITERIA。 Design the facilities using NAVFAC DM-28。4, General Maintenance Facilities。  Design the ventilation system using general technical requirements in chapter 4 of this UFC and the specific requirements in this Chapter。

8-3。1 Exhaust System。 Design exhaust ventilation to have both high-level exhaust for hydrogen and low-level exhaust for electrolyte spills (acid fumes and odors)。 Distribute one-third of the total exhaust flow rate to the high-level exhaust to ventilate all roof pockets。  Locate low-level exhaust at a maximum of 304。8-mm (1-ft) above the floor。  See Figure 8-1 for a floor plan of a battery maintenance room。

8-3。1。1 Minimum Flow Rate Calculation。  To determine the amount of required volumetric airflow rate, the amount of hydrogen produced must be calculated for the total number of battery cells in the room。 The volume of hydrogen generated is governed by the amount of charging current (ampere) supplied to the fully charged battery by the charger。 Significant amounts of hydrogen are evolved only as the battery approaches full charge。 To determine a minimum required volumetric airflow rate, use the following formulas:

C = (FC/100) x AH x K x N (1)

Q = (C/60)/ PC (2)

Figure 8-1。  Ventilation system for battery maintenance facilities。

Where:

C = Hydrogen generated, in cubic feet per hour (cfh)。

FC = Float current per 100 ampere-hour。  FC varies with battery types, battery condition, and electrolyte temperature。 It will double/halve for each 15 degrees F (8 degrees C) rise/fall in electrolyte temperature。

AH = Ampere hour。

K = A constant of 0。016 cubic feet of hydrogen per 1 ampere-hour per cell (at sea level and 77 degrees F ambient temperature)。

N = Number of battery cells。

Q = Minimum required ventilation airflow rate, in cubic feet per minute (cfm)。

PC = Percent concentration of hydrogen allowed in room (PC = 0。01 to keep the hydrogen concentration at 1 percent)。

Formula (2) assumes complete mixing of the air inside the battery maintenance facility。  In most cases, use a safety factor k to determine the actual ventilation rate。

See Figure 2。1 of the ACGIH IV Manual to select a “k” value。

QA = Q x k (3)

QA = The actual volumetric ventilation rate, in cubic feet per minute (cfm), which can be expressed in air change per hour (ACH) using the following formula:

上一篇:基于网络的注塑模具智能设计英文文献和中文翻译
下一篇:三维有限元分析英文文献和中文翻译

兰州某大酒店空调设计+CAD图纸

新能源空调系统设计英文文献和中文翻译

机械设计制造及其自动化英文文献和中文翻译

FPGA的全景拼接相机的优化...

海水淡化的优化设计英文文献和中文翻译

模拟退火技术来设计英文文献和中文翻译

超市空调系统英文文献和中文翻译

新課改下小學语文洧效阅...

互联网教育”变革路径研究进展【7972字】

老年2型糖尿病患者运动疗...

ASP.net+sqlserver企业设备管理系统设计与开发

麦秸秆还田和沼液灌溉对...

网络语言“XX体”研究

张洁小说《无字》中的女性意识

LiMn1-xFexPO4正极材料合成及充放电性能研究

安康汉江网讯

我国风险投资的发展现状问题及对策分析