Fig。 10。 Newly designed cooling channels with 8-mm diameter。

as an axis in the cross section of a beam or shaft along which there are no longitudinal stresses or strains (Fig。 8)。 If the section is symmetric, isotropic, and not curved before a bend occurs, then the neutral axis is at the geometric centroid。 If all polymers on one side of the neutral axis are in a state of tension, those on the opposite side are in compression。 Thereby, there is a compressive strain at the top of the beam, and a tensile strain at the bottom of the beam。 From statics, a moment consists of equal and opposite forces; therefore the total amount of force across the cross section must be zero    [21]。

Basically, the approach used in this study analyzed the cross- sectional temperature distribution along the part thickness immediate- ly after the filling process (i。e。, the molten polymer within cavities was under zero pressure)。 Without pressure affecting the temperature distribution, the effects temperature exerted on warpage were able to be observed。 Molten polymer at a high temperature shrinks substan- tially after cooling to room temperature。 The cross-sectional tempera- ture distribution and the location of its neutral axis can indicate the warping trend。 For example, Fig。 9 illustrates the cross-sectional tem- perature profiles associated with long and short edges。 According to

Fig。 11。 Warpage of the long edge w。r。t。 with various mold temperature settings。

the temperature profile in the C-C section of the short edge (Fig。 2), the maximal temperature was located above the neutral axis and caused relatively substantial shrinkage during cooling, suggesting that the short edge will warp, forming a concave shape after cooling。 By contrast, the maximal temperature is located below the neutral axis in the A-A section of the long edge (Fig。 2), which will warp into a convex shape。 Therefore, the neutral axis theory can be considered to explain the warpage behavior depicted in the simulation (Fig。 7)。 Moreover, if the temperatures of female and male mold plates are adjusted to enable the maximal temperature to be located exactly on the neutral axis, the warpage caused by uneven shrinkage can be  eliminated。

关键词:注射成型,中性轴理论,薄壁成型;翘曲。

摘要目前,3C产品要求轻巧,便携,方便。在大规模生产塑料加工行业中注塑成型是最常用的技术之一,但是生产不翘曲的薄零件是具有挑战性的。尽管塑料部件翘曲有许多复杂的原因,但是在塑料零件加工过程中,翘曲主要是由于变化收缩引起的。材料性能,零件设计,模具设计,加工条件是影响零件收缩率变化的因素。例如,在构件几何时,厚度不一致,缺少的浇口或注塑模具冷却设计,及不正确的成型条件设置可能会导致塑件过度翘曲。装配质量差的组件会导致不可预测形状的翘曲形变。虽然通过调整模具温度提高翘曲实现模具冷却,但是传统的单模具温度设定取决于动模定模板的冷却能力。因此本文介绍了本地模具通过温度设定对于一个手持是通信盖防止产生不对称的塑料严重翘曲的冷却系统装置。介绍了中性轴理论,分析了截面部分温度分布,然后预测翘曲趋势。在这项研究中通过仿真和实验,在冷却系统中使用一种有效的局部模具温度设定验证减少塑件翘曲变形的可行性。

1、介绍

当熔融聚合物进入模腔时,薄(b1。5mm)而且高比例流动长度与厚度(N100)特征的塑件快速形成固体层,从而促进了短杆造成的流动通道急剧下降。因此, 在注塑成型过程中要求高的喷射速度来完成填充和填充过程[ 1 ]。这种高速的注塑成型要求采用高注入压力将熔融聚合物注入模腔和克服流动阻力,因此内部压力相当大的变化,特别是靠近和远离浇口的聚合物材料。这种现象容易产生不均匀收缩可能会引起塑件翘曲变形[ 2,4 ]。因为塑件薄壁他们薄弱的机械结构所以薄壁塑件特别容易产生严重的翘曲;尽管如此,不正确的成型条件和不均匀的冷却效果,也会导致截面收缩变化的结果。因此,在连续的装配过程中翘曲控制式预防质量问题至关重要的制造业,翘曲在尺寸公差中必须最小化。注塑件翘曲变形的主要原因是塑件从高温到低温时,不均匀的体积收缩造成的。体积收缩程度的注射成型部分可以用压力–体积–温度(PVT)图描述,如图1所示。 从点1到2的图案代表熔融聚合物进入模腔的填充阶段,并且相应的注入压力程度,模仁压力逐渐增加。点2表示填料后充模结束;模仁中熔融聚合物压力达到最大点,点3处。从3点到4点的图案是包装到静态的经常设置在一个比注射压力相对较低的过渡值;在过渡过程中,熔融聚合物的后流稍微减少了模仁压力。静态保持阶段,补偿具体体积减少的冷却(点4至5)是在恒定压力下进行的。值得注意的是,补偿保压压力只有当聚合物熔体在浇口不结冰的情况下实现是有效的。从点5到7,模具冷却过程中的压力随体积收缩的程度不断下降代表了冷却阶段;点5至6点,6点至7点,表明该恒定的体积和恒定的压力条件,分别在7点时,将模制件从模腔中排出,然后在正常大气压力下冷却至室温(点8)。点6和8之间的行程距离决定了注塑件的体积收缩程度。论文网

上一篇:声音识别技术的焊接机器人英文文献和中文翻译
下一篇:单级直齿圆柱齿轮减速器英文文献和中文翻译

快速成型制造技术英文文献和中文翻译

薄壁行星齿轮的变形体动...

注射成型的微悬臂梁结构英文文献和中文翻译

汽车挡泥板注塑成型中能...

塑料注射成型工艺参数优...

Moldflow软件在复杂的塑料外...

薄壁塑料件注塑工艺参数英文文献和中文翻译

互联网教育”变革路径研究进展【7972字】

LiMn1-xFexPO4正极材料合成及充放电性能研究

新課改下小學语文洧效阅...

老年2型糖尿病患者运动疗...

我国风险投资的发展现状问题及对策分析

安康汉江网讯

ASP.net+sqlserver企业设备管理系统设计与开发

麦秸秆还田和沼液灌溉对...

张洁小说《无字》中的女性意识

网络语言“XX体”研究