The developed vortices convect along the bottom and side of hull surface。 Some of vortices are accumulated near the free surface line due to flat free surface condi- tion and this flat condition should be improved to ac- count free surface movement。 On the case of bow(X/L
= 0。05) and stern (X/L = 0。95) sections, keel vortices are dominant part and make on pare of relatively strong vortices after one roll cycle。 These vortex flow patterns can be clearly shown from the velocity vectors of Fig。10 and 11。
60 hull。 The results of full ship are computed from the integral of computed roll damping of seven sections along the hull。 Circles are Ikeda’s experimental results of total roll damping coefficients (B44)。 These results include the wave damping (Bw) and viscous damping (BF + BV) coefficients。 The calculated vortex induced damping (BV) coefficients are shown as diamonds con- nected by solid line。 Squares are the calculated total roll damping coefficients including wave and frictional damping coefficients。 At the present calculation of total damping coefficients, the wave and friction damping coefficients calculated by Ikeda (1977) are used for the comparison purpose。 In the present motionanalysis, both wave and friction damping can be calculated straightforwardly in the SSMP。
Results of roll R。A。O of the Series 60 Cb = 0。6 model hull plotted against roll frequency are presented in Fig。
14。 The calculation of R。A。O for the model ship is car- ried out using the SSMP。 The solid curve show the results computed with wave damping only and the cir- cles connected with solid curve shows the results com- puted with total damping including viscous damping coefficients (BF + BV)。 The difference between two computations is a measure of the viscous effects of vortices and frictions。 The differences are not significant compared to the barge section results (Fig。 7) by the reason of weaker vortex damping。摘要本研究的主要目的是开发一个简单、可靠的数值工具,可用于分离流场中船舶横摇运动的建模, 以及估算相关的涡流横摇阻尼系数,专家们已经开发出一种以离散涡方法论文网(全文简称 DVM)为基础的 数值模拟方法。横摇运动是仿照分段船体表面的截面进行分布建模的,其中引入漩涡来代表流动分离。 由专家们开发出的模型可以预测出横摇力和横摇力矩的阻尼系数,该系数可用于预测 60 系列船体驳船 的横摇操作响应幅值(即 R。A。O)。
关键词离散涡法;涡流;横摇运动;操作响应幅值;驳船;60 系列
1。引言
利用线性势流理论(Lloyd,1998 年)对波浪引起的船舶激励和运动进行评估,是早 期船舶设计过程中的一个重要组成部分。对于这些评估,专家们通常会忽视船舶的粘滞效 应,并假定在流体包围中的船舶主体保持不变。在特定情况下,船舶处于横摇运动时,如 果观察船体相对锋利的边缘,就可以从边缘发现粘性对流动分离现象的影响,进而为预测 船舶的相对运动作出重大贡献(Downie 等人,1993 年)。
研究者们通过对波辐射和粘滞阻尼进行求和,求出了总的水动力阻尼。通常情况下, 对粘性阻尼的估计是不容易用传统的方法来估测的,需要采用实验或半经验的方法(Brown 等人,1983 年)。专家们采用模型测试的实验,再加上模拟技术,得出实验数据。根据对 实验数据的分析(Himeno,1981 年;Ikeda 等人,1977 年),可以非常准确地预测船舶在 大多数情况下的行为。然而,有专家认为,这是否是一个合适的评估方法是值得怀疑的, 因为在早期的船舶设计阶段,船舶的很多行为主要是由于成本及所涉及的时间和事实导致 的,所以,在这一阶段可能无法充分地确定船体的几何结构,这就无法对船舶进行准确地 建模,也就没办法进行模型测试了。来;自]优Y尔E论L文W网www.youerw.com +QQ752018766-