4 Þ 3 — PsÞx4
Vt _
/ðxÞ¼ 6 —h2x2 — h3 x3 þ h1ðpffiPffiffiffiffiffiffiffiffiffiffitffiaffiffiffinffiffiffihffiffiffiffiffirffixffiffiffiffiffiffiffixffiffiffiffi
ffiffiffiffiffi 7
QLAP x_ p þ Ctl PL þ 4b PL ; ð6Þ 6 0 7
2
where Ctl ¼ Cil þ Cel is the total leakage coefficient [m5/Ns], Cil is the
—xnx4 — 2fxnx5
T
internal leakage coefficient [m5/Ns],
Cel is the external leakage coef-
¼ ½ 0 /2ðxÞ /3ðxÞ 0 /5ðxÞ ] ;
ficient [m5/Ns], Vt is the total actuator volume [m3], and be is the effective bulk modulus of the system [N/m2]。
B ¼ 。
0 0 0 0 x2Kv 。 ;
Remark 1。 To smooth the function sgn(xv), sgn(xv) is replaced with tanh(rxv) where r is a sufficiently large positive constant。 This modification is reasonable due to the leakage of the valve spool
[35–37]。
Combining the control flow rate Eq。 (4) and the load flow rate continuity Eq。 (6), the fluid dynamic equation of the actuator is gi- ven by
and
C ¼ ½ 1 0 0 0 0 ]:
To estimate x, we design a high gain observer such that
^x_ ¼ A^x þ /ð^xÞþ Bu^ þ Lðy — y^Þ; ð11Þ
where ^x is the estimation of states and L is the observer gain。 We analyze the convergence of the estimation error and stability of
4beAP
4beCtl
4beCdw qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
the closed-loop system。 Let us define the estimation error as
P_ L ¼—
t
x_ p —
t
PL þ
Vt pffiqffiffiffi
ðPs — tanhðrxv ÞPL Þxv : ð7Þ
2 ~x1 3
2 x1 — ^x1 3
Finally, by applying Newton’s second law, the actuator’s force
where m is the mass of the piston [kg], k is the load spring constant
[N/m], and b is the viscous damping coefficient [N/(m/s)]。
Combining 3–8, the dynamics of the EHS can be formulated as a state space representation:
x_ ¼ f ðx; uÞ;
Differentiating the estimation error gives us
~x_ ¼ Ao~x þ dðx; ^xÞ; ð13Þ
where x1 is the position of the piston [m], x2 is the velocity of the
piston [m/s], x3 is the load pressure [N/m2], x4 is the spool position
^
6 /2 ðxÞ— /2ð^xÞ 7
6 7
^ 6 ^ 7 T
of the servo valve [m], x5 is the velocity of the servo valve [m/s], u is
dðx; xÞ¼ /ðxÞ— /ðxÞ¼ 6 /3 ðxÞ— /3ðxÞ 7 ¼ ½ 0 d2 d3 0 d5 ] ;