> xd d
: 5 ¼ x5 þ x_ 4 — k4 e4 :
4。2。Gain selection for exponential stability
From the control law (33), the tracking error dynamics becomes
e_ ¼ Aee þ Beðe; x3 ; x4Þ; ð34Þ
where e ¼ ½ e1 ; e2; e3; e4; e5 ]T ,
Fig。 2。 Block diagrams of the two methods。
e_ ¼ Abackðx3 ; x4 Þe; ð36Þ
where
2 —k1 0 0 0 0 3
6
6
Ae ¼ 6
0 —k2 0 0 0 7
0 0 —k3 0 0 7
2 —k1 g1 0 0 0 3
6 —g1 —k2 g2 0 0 7
6 7
6 0 0 0 —k4 0 7
Abackðx3 ; x4 Þ¼ 6
6
0 —g2 —k3 g3 ðx3 ; x4 Þ 0 7
7
0 0 0 0 —k5
T
6 0 0 —g3ðx3 ; x4Þ —k4 g4 7
0 0 0 —g4 —k5
Beðe; x3; x4 Þ¼ ½ g1 e2; g2e3 ; g3 ðx3 ; x4Þe4; g4 e5 ; 0 ] :
The passivity-based controller is designed to create passive interconnected subsystems passive。 On the other hand, the back- stepping controller is designed to guarantee the passivity of the en- tire tracking error dynamics for strict feedback nonlinear systems [41]。 Now in order to compare the tracking error dynamics (34) in a passivity-based controller to the tracking error dynamics in the general backstepping controller, the backstepping control law
Remark 4。 In backstepping control design, the additional term gi 1e in xd makes A ðx ; x Þ ¼ A þ A ðx ; x Þ where Aback0 < 0 and Aback1 ðx3; x4Þ ¼ —Aback1 ðx3; x4Þ。 Therefore, the tracking error dynamics (36) becomes strict passive。 Unlike the origin of the
tracking error dynamics (34) in the passivity-based controller, the