TABLE II。 TYPICAL INDUSTRY DATA FOR LINE OUTAGE

Parameter Value

L 0。6488

T 0。1629

rL 20。8

rT 16。1

TABLE III。 PROBABILITY OF LINE CAPACITY

with 60% capacity factor is integrated with the power system, while all other assumptions are as same as in the previous example。 Table V shows the reliability assessment results。 It can be seen that when the transmission capacity is 60% of the wind capacity, the system reliability and the utilization  of wind energy reduced significantly, comparing to the 80% capacity and full capacity scenarios。 The reliability capacity cost can be evaluated based on the addition of thermal units。 Assume that the FOR of the additional thermal units is 0。12。 The 60% capacity scenario needs 30 MW of  additional thermal capacity to achieve the same reliability level as in the full  capacity  scenario。  It  is  also  noticed  that  extra     wind

  generation    capacity    may    be    needed    for    the de-rated

Capacity Probability

0 0。00001354

One line in service 0。00734615

  Two lines in service 0。99265031

TABLE IV。 EENS COMPARISON FOR 40% WIND CAPACITY FACTOR

transmission upgrade scenarios depending on the RPS target。

IV。Conclusions

Wind resource integration has significant impacts on the system reliability。 Although the deterministic reliability  study

   60% capacity plus outage      4。066654 11。51

TABLE V。 EENS COMPARISON FOR 60% WIND CAPACITY FACTOR

Transmission Model EENS (GWh) Consumed wind energy/Total consumed

  energy (%)

Full capacity 2。175580 19。50

Full capacity plus outage 2。179758 19。45

80% capacity 2。204843 18。21

80% capacity plus outage 2。212937 18。16

60% capacity 2。415480 15。35

   60% capacity plus outage     2。429566 15。30

For the 570 MW wind farm with 40% capacity factor in this example, it may be appropriate to build the transmission lines whose capacity is 60% of the wind farm capacity from the probabilistic reliability standpoint。 The transmission upgrade based on the full capacity of the wind farm does not provide much more benefit to the system than the upgrade based on 60% capacity。

The wind farm capacity factor may affect the selection of the target capacity of transmission upgrade。 Assume a wind   farm

Probabilistic reliability assessment has been applied to wind resources integration in this paper。 It has been demonstrated that the deployment of wind generation needs to be coordinated closely with the deployment of conventional capacity。 The probabilistic reliability assessment can identify the reliability capacity cost for wind resource integration。 The reliability capacity cost can be estimated based on the addition of the conventional capacity that is needed to maintain system reliability。

上一篇:JUC同步框架英文文献和中文翻译
下一篇:机器人控制系统英文文献和中文翻译

柴油机大涡中小火焰模型...

智能城市物流云计算模型英文文献和中文翻译

悬架系统的多体动力学模...

风能介绍英文文献和中文翻译

弯曲处的残余应力模型英文文献和中文翻译

Java技术的Web应用设计模型...

机电一体化模型英文文献和中文翻译

麦秸秆还田和沼液灌溉对...

老年2型糖尿病患者运动疗...

网络语言“XX体”研究

安康汉江网讯

我国风险投资的发展现状问题及对策分析

ASP.net+sqlserver企业设备管理系统设计与开发

新課改下小學语文洧效阅...

互联网教育”变革路径研究进展【7972字】

LiMn1-xFexPO4正极材料合成及充放电性能研究

张洁小说《无字》中的女性意识