摘要实验室规模的厌氧氨氧化折流板反应器采用两种进水模式运行。在阶段1,将反应器操作为普通厌氧折流板反应器(CABR)(恒定的流动方向),然而在第2阶段,将反应器的设置为流向切换式厌氧折流板反应器(FSABR),流动方向每10天进行切换。调整的进水模式导致了平均氮去除速率从1.62增加到1.80 kg N m-3 d-1,脱氮效率从75.4增加到83.1%。此外,在第2阶段获得最大氮去除率为3.49 kg N m-3 d-1,相对于阶段1的3.00 kg N m-3 d-1,污泥脱氮性能提高;从阶段1到阶段2,厌氧氨氧化污泥活性增加超过5倍,沉降速度从64.1增加到71.9mh-1,污泥平均颗粒从0.8增加到2.3mm。然而,血红素c含量变化最小。根据Stover-Kincannon模型,在阶段1和2中的最大基底去除速率分别为4.28和46.38 kg N m-3 d-1。结果表明,FSABR与CABR相比性能显著增强。71631
Abstract: A laboratory-scale anaerobic ammonium oxidation (anammox) reactor was operated with two feeding regimes. In stage 1, the reactor was operated as a common anaerobic baffled reactor (CABR) (constant flow direction), whereas in stage 2, the reactor was modified as a flow switched anaerobic baffled reactor (FSABR) with the flow direction switching every 10 days. Adjusting the feeding regime resulted in an increase in the average nitrogen loading rate (from 1.62 to 1.80 kg N m-3d-1) and nitrogen removal efficiency (from 75.4 to 83.1%). In addition, a maximum nitrogen removal rate of 3.49 kg N m-3 d-1 was obtained in stage 2, compared with 3.00 kg N m-3 d-1 in stage 1. Thesludge properties were also enhanced; from stage 1 to stage 2, the specific anammox activity increased by more than 5-fold, the settling velocity increased from 64.1 to 71.9 m h-1, and the average particle diameter increased from 0.8 to 2.3 mm. However, there was minimal variation in the heme c content. According to the Stover-Kincannon model, the maximum substrate removal rates in stages 1 and 2 were 4.28 and 46.38 kg N m-3 d-1, respectively. The results indicate that the FSABR performance was significantly enhanced compared with the CABR.
毕业论文关键词:厌氧氨氧;ABR;进水机制;污泥特性
Keywords: anammox; ABR; feeding regime; sludge characteristics
目录
1、引言.4
2、材料和方法..4
2.1.接种污泥和厌氧氨氧化反应器4
2.2.模拟废水5
2.3.分析方法5
2.4统计分析.5
3、结果与讨论..5
3.1反应器性能.6
3.2化学计量比.6
3.3污泥颗粒特.9
3.4修饰的Stover-Kincannon模型.12
4、总结.12
1.引言
日趋严重的水污染使得水环境问题成为当前最受关注的研究领域之一,这其中又以水体富营养化最为常见。由于N、P等营养元素在水体中的大量聚集造成水体藻类及浮游生物大量繁殖。水体溶解氧量降低。水体富营养化是大量的水生动物死亡的主要原因。由于其危害巨大,水体的富营养化问题得到了全社会的广泛关注和重视。氮素污染物是富营养化的“罪魁祸首”之一,废水脱氮成为防治水体富营养化的必然要求。作为新型的生物脱氮技术,厌氧氨氧化工艺在废水生物脱氮领域具有良好的应用前景。厌氧氨氧化工艺以NH4+-N为电子供体、NO2--N为电子受体、一氧化氮和联氨为关键中间产物及氮气为终产物的生物反应.在一系列的中试和工业规模ANAMMOX成功启动后,从中也发现了一系列的问题。厌氧氨氧化细菌的倍增时间长(约11d),导致反应工艺内的污泥厌氧氨氧化细菌富集速度较慢,严重的阻碍了工艺的正常启动。同时颗粒化污泥的形成被认为是成熟污泥形成的表现,在以往研究中我们发现,较高的剪切力可以促使颗粒化的形成。但是将工艺放大为工程用反应器的同时,为加速污泥颗粒化的形成,颗粒污泥所需的高水力紊动条件只有靠加大进水负荷实现,其势必导致较多污泥的流失。文献综述