特征脸方法是90年代初期由Turk和Pentland提出的目前最流行的算法之一,具有简单有效的特点, 也称为基于主成分分析(principal component analysis,简称PCA)的人脸识别方法。
特征子脸技术的基本思想是:从统计的观点,寻找人脸图像分布的基本元素,即人脸图像样本集协方差矩阵的特征向量,以此近似地表征人脸图像。这些特征向量称为特征脸(Eigenface)。
特征脸方法是一种简单、快速、实用的基于变换系数特征的算法,但由于它在本质上依赖于训练集和测试集图像的灰度相关性,而且要求测试图像与训练集比较像,所以它有着很大的局限性[17]。
下面就直接给出基于特征脸的人脸识别实现过程:
1)将训练集的每一个人脸图像都拉长一列,将他们组合在一起形成一个大矩阵A。假设每个人脸图像是MxM大小,那么拉成一列后每个人脸样本的维度就是d=MxM大小了。假设有N个人脸图像,那么样本矩阵A的维度就是dxN了。
2)将所有的N个人脸在对应维度上加起来,然后求个平均,就得到了一个“平均脸”。你把这个脸显示出来的话,还挺帅的哦。
3)将N个图像都减去那个平均脸图像,得到差值图像的数据矩阵Φ。
4)计算协方差矩阵C=ΦΦT。再对其进行特征值分解。文献综述
5)将训练集图像和测试集的图像都投影到这些特征向量上了,再对测试集的每个图像找到训练集中的最近邻或者k近邻,进行分类即可。
另外,对于步骤4,涉及到求特征值分解。如果人脸的特征维度d很大,例如256x256的人脸图像,d就是65536了。那么协方差矩阵C的维度就是dxd=65536x65536。对这个大矩阵求解特征值分解是很费力的。那怎么办呢?如果人脸的样本不多,也就是N不大的话,我们可以通过求解C’=ΦTΦ矩阵来获得同样的特征向量。可以看到这个C’=ΦTΦ只有NxN的大小。
图2-4-1特征向量图
其中,ei是C’=ΦTΦ的第i个特征向量,vi是C=ΦΦT的第i个特征向量,由证明可以看到,vi=Φei。所以通过求解C’=ΦTΦ的特征值分解得到ei,再左乘Φ就得到C=ΦΦT的特征向量vi了。也就是我们想要的特征脸。