物流配送路径的选择是物流活动的重要组成部分,它对企业降低经营成本、增强市场竞争力具有重要的意义。本文以某著名食品连锁企业为背景,对建模软件 MATLAB在物流路径优化和选择方面进行了应用实践研究。 本文首先从物流配送车辆调度问题入手,简单的阐述了车辆调度问题的定义、分类、及其约束条件,着重讨论了确定性信息和不确定信息的车辆调度问题的不同,也对随机、模糊、动态三类不确定信息的车辆调度问题进行了细致的阐述和分析。在此基础上,介绍了车辆调度的模型和算法,尤其着重的研究了启发式算法里面的智能化启发式算法,也对比较流行的三类启发式算法进行了详细的介绍。通过对实际连锁店坐标数据的收集和录入,基于连续型 Hopfield 神经网络算法,结合 MATLAB建模软件,最终得到最优化的配送路径。在这里,本文也简单的介绍了 Hopfield 神经网络的设计原理和相应的设计步骤。最后本论文根据需求确定和需求发生突变两种情况进行相应的 MATLAB建模,从而得到相应的仿真结果,在结果的基础上进行比较分析,从而选取最优配送方案。本文为运用数学建模软件解决企业物流配送问题提供了理论基础和可借鉴的实例。9896
关键词 物流 不确定信息 车辆调度 神经网络 MATLAB Title Modeling and simulation of MATALB based on uncertain
information-oriented online business logistics
vehicle routing problem
Abstract
Logistics path selection is an important part of the logistics activities, it has great
significance for reducding operating costs and enhancing the market competitiveness.
This paper based on a well-known food chain enterprise and had a practice study in the
logistics path optimization and selection of modeling software MATLAB.
Based on the study of vehicle routing problem, logistics path optimization method
and Hopfield neural network design principles, the application of modeling software
MATLAB and Hopfield neural network algorithm in solving logistics path optimization
and selection are discussed. A simulation model for the logistics distribution activities
of Christine chain store is put forward. Besides, the cases of demands are constant and
demands are changed are discussed, it is more conducive to choose which one is the
optimal path. This paper provided theoretical basis and reference examples by applying
mathematical modeling software to solve the distribution problem of enterprise
logistics.