摘要目前世界各国都在大力发展节能和能源再利用技术,越来越多的电子系统能够在极低功耗下运行。能量收集技术是近年来才开始发展的一种有效利用环境周围存在的各种形式的微小能量并将其转换为能够为微功耗电子系统供电的技术,国外称之为能源收获和能源回收。
本文介绍了能量收集的概念和该项技术及装置的发展现状。以热能表为实际的应用对象,研究了如何将热能表应用环境中存在的热能和动能转换为电能,为热能表长期运行提供电源的问题。具体分析、比较了热能转换和动能转换两种转换方式的可行性和优劣,说明了利用温差发电技术将热能转换为电能的原理,重点研究了动能转换发电的技术。利用涡街原理,使供热管道中水流产生振荡,冲击压电材料,从而实现动能到电能的转换。论文中对转换装置的机械结构进行了设计,利用fluent软件对管内流体的压力分布进行仿真,对涡街发生体尺寸进行了优化,计算验证了利用涡街效应对压电材料的作用发电的可行性。
关键词 能量收集 热电转换 涡街流量计 fluent仿真 优化
毕业设计说明书(论文)外文摘要
Research of Energy Collection Technology and Design of Device
Abstract
At present, countries all over the world are developing renewable energy.There are more and more electronic systems that can operate with a bit of energy.Energy collection technology means that we make use of the abandoned tiny energy around and use it for independent model.Other countries call it energy harvesting and recovering.In this paper,we describe the current situation of the development of the energy collection devices, and the development level.We use heat meter as practical applications and try to charge the heat meter.Then we discuss the heat energy and kinetic energy which we can take advantage of.We explain the
Principle of power generation with temperature difference.Propose the way of conversion of kinetic energy and compare with conversion of thermal energy,design the structure of device in hose.Use the principle of vortex flowmeter to calculate and verify the feasibility.Choose suitable piezoelectric material.We use the software fluent to simulate the distribution of pressure in the piezoelectric material,optimize the size of Vortex generating body and piezoelectric material to check the feasibility of using kinetic energy to charge the heat meter.
Keywords energy collection thermoelectric conversion optimize vortex flowmeter
目 次
摘要I
AbstractII
1引言1
1.1 能量收集技术1
1.2 课题意义2
1.3 超声波热能表简介2
1.4 本课题主要研究任务3
2方案分析与选择4
2.1热能转换方案 4
2.1.1 温差发电技术简介 4
2.1.2 温差发电原理 5
2.1.3 温差发电方案结论 7
2.2动能转换方案 8
2.2.1 动能转换方式设计 8
2.2.2 压电式发电的国内外研究现状与水平 9
2.2.3 压电材料理论10
2.2.4 涡街原理12
2.2.5 发生体结构设计13
2.2.6压电发电系统方案二简介 15
2.2.7 两种转换方案的比较16
3压电发电装置理论验证及fluent仿真17
3.1发生体的升力17
3.2 fluent仿真 18
3.3压电转换计算23
4压电转换电路设计 24
4.1 升压电路设计 24
4.2 外围元器件选择 24
4.3 LTC3108引脚应用设置 26