摘 要:近年来,能源与材料费用的不断增长极大地推动了对高效节能换热器的研究,地下工程空间有限,高效率的换热器能节约地下工程的使用空间和能源。目前,节能减排己成为我国重要战略的举措,高效节能换热器的研究也成为当今地下换热领域研究的热点。所以设计出这项乙醇的最终目的是为了实现能源交换的有效利用,能合理地利用能源,有效提高能量的利用率,做到高效节能。U形管式换热器是管壳式换热器的一种,它由管板、壳体、管束等零部件组成。在同样直径情况下,U形管换热器的换热面积最大;它结构简单、紧凑、密封性能高, 检修、清洗方便、在高温、高压下金属耗量最小、造价最低;U形管换热器只有一块管板,热补偿性能好、承压能力较强,适用于高温、高压工况下操作。本毕业设计主要完成 U 型管式换热器的设计任务。70712
毕业论文关键词:效率高;节能;U 形管式换热器
Design of U-tube Ethanol solution cooler
Abstract:In recent years,the cost of energy and Material promote the research for energy-efficient heat exchanger vastly. The underground works are limited in space,the energy-efficient heat exchanger can save the use space of underground engineering and energy. At present, energy saving and emission reduction has become an important strategic measure in China. The research of energy-efficient heat exchanger has become a hot topic in the field of underground heat exchange. Therefore, the ultimate goal of designing this ethanol is to achieve the efficient use of energy exchange. The rational use of energy effectively improve the utilization rate of energy, achieving high efficiency and energy saving. U - tube heat exchanger is a kind of shell and tube heat exchanger, the utility model is composed of a tube plate, a shell, a tube bundle and other parts. At the same diameter, the heat transfer area of the U tube heat exchanger is the largest. It is simple, compact structure, high sealing performance, maintenance, easy cleaning, under high temperature, high pressure metal consumption of the smallest, lowest cost; U tube heat exchanger is only a piece of tube plate, thermal compensation performance is good, the confined ability is stronger, is suitable for high temperature and high pressure conditions. This graduation project mainly completes the design task of U-tube heat exchanger.
Keyword: efficient;energy saving;u-tube heat exchanger
目录
1.前言…5
1.1课题背景5
1.2课题研究意义5
1.3设计目的5
2.加热器整体方案选定7
2.1方案的要点、要求…7
2.2换热器的结构.7
2.3换热器的选择.8
2.4流动空间选择.8
2.5流速确定.9
2.6材质选择10
3.加热器结构设计…...11
3.1符号意义11
3.2管箱的设计…12
3.3圆筒的设计…13
3.4换热管的选择16
3.5换热管的结构设计17
3.6管板设计22
3.7换热管与管板的连接…28
3.8封头设计29
4.加热器零件结构设计…..34
4.1折流板…34
4.2拉杆,定距管36
4.3防冲与导流…37
4.4防短路结构…38
4.5接管设计40
4.6容器法兰设计44
4.7鞍座的设计…49
5.模拟计算51
5.1管板的应力分析51
5.2模拟计算结构判断…57
6.总结59
7.致谢60
8.参考文献61
第一章 前言
1.1课题背景
换热器是一种实现物料之间热量传递的节能设备,在石油、化工、冶金、电力、轻工、食品等行业应用普遍、在炼油、化工装置中换热器占总设备数量的40%左右,占总投资的30%~45%。近年来随着节能技术的发展,换热器的应用领域不断扩大,带来了显著的经济效益。目前,在换热设备中,管壳式换热器使用量最大。因此对其进行研究就具有很大的意义[1]。管壳式换热器由一个壳体和包含许多管子的管束所构成,冷、热流体之间通过管壁进行换热的换热器。它适应于冷却、冷凝、加热、蒸发和废热回收等各个方面。通常管壳式换热器的工作压力可达4兆帕,工作温度200℃以下,在个别情况下还可以达到更高的压力和温度。一般壳体直径在1800mm以下,管子长度在9m以下,在个别情况下也有更大或更长的。