一、课题的任务内容:处理特定掺杂结构的石墨纳米笼,利用简单酸洗或磁性分离,载体负载铂钌作为电催化剂用于低温燃料电池。
二、原始条件及数据:
在碳载体负载铂钌作为电催化剂用于低温燃料电池,测试铂钌颗粒大小及催化性能。
三、设计的技术要求(论文的研究要求):
对多孔壁碳纳米笼负载铂纳米颗粒的研究进行探索,研究特定掺杂结构的石墨纳米笼,利用简单酸洗或磁性分离,载体负载铂钌作为电催化剂用于低温燃料电池,这些试验的可行性。42882
四、毕业设计(论文)应完成的具体工作:
研究特定掺杂结构的石墨纳米笼,利用简单酸洗或磁性分离,载体负载铂钌作为电催化剂用于低温燃料电池,这些试验的可行性。
软硬件名称、内容及主要的技术指标(可按以下类型选择):论文网
图 纸
电 路 板
机 电 装 置
新材料制剂
结 构 模 型
其 他 负载量达20wt%时,铂钌颗粒在4nm
[1] Lee Y. J., Yi H., Kim W. J., Kang K., Yun D.S., Strano M.S., Ceder G., G., Belcher A. M., Fabricating Genetically Engineered High-Power Lithium-Ion Batteries Using Multiple Virus Genes. Science, 2009, 324, 1051.
[2] Niu J. J., Wang J. N., Activated carbon nanotubes-supported catalyst in fuel cells. Electrochim. Acta, 2008, 53, 8058.
[3] Joo S. H., Choi S. J., Oh I., Kwak J., Liu Z., Terasaki O., Ryoo R, Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature, 2001, 412, 169-172.
[4] Zhou J. H., He J. P., Zhao G. W., Ordered mesoporous carbon decorated with rare earth oxide as electrocatalyst support for Pt nanoparticles. Electrochem. Commun., 2008, 10, 76-79.
[5] Chai G. S., Shin I. S., Yu J. S., Synthesis of Ordered, Uniform, Macroporous Carbons with Mesoporous Walls Templated by Aggregates of Polystyrene Spheres and Silica Particles for Use as Catalyst Supports in Direct Methanol Fuel Cells. Adv. Mater., 2004, 16, 2057-2061.
[6] Han S. J., Yun Y. K., Park K. W., Simple solid-phase synthesis of hollow graphitic nanoparticles and their application to direct methanol fuel cell electrodes. Adv. Mater., 2003, 15, 1922-1925.
[7] Xia B. Y., Wang J. N., Wang X. X., Niu J. J., Sheng Z. M., Chang H., Pak C., Synthesis and application of graphitic carbon with high surface area. Adv. Funct. Mater., 2008, 18, 1790-1798.
[8] Niwase K., Homae T., Nakamura K. G., Generation of giant carbon hollow spheres from C60 fullerene by shock-compression. Chem. Phys. Lett., 2002, 362, 47-50.
[9] Saito Y., Matsumoto T., Hollow and filled rectangular parallelopiped carbon nanocapsules catalyzed by calcium and strontium. J. Cry. Grow., 1998, 187, 402-409
[10] Du A. B., Liu X. G., Xu B. S. Synthesis and structure characterization of coal-based nano-structured onion-like fullerenes. J. Inorg. Mater., 2005, 20, 779-784
[11] Chlopek J., Czajkowska B., Szaraniec B., In vitro studies of carbon nanotube biocompatibility. Carbon, 2006, 44, 1106-1111.
[12] Smart S. K., Cassaday A. I., Lu G. Q., The biocompatibility of carbon nanotubes. Carbon, 2006, 44, 1034-1047.
[13] Abatemarco T., Stickel J., Belfort J., Fractionation of Multiwalled Carbon Nanotubes by Cascade Membrane Microfiltration. J. Phys. Chem. B, 1999, 103, 3534-3538.