(1)与正整数 n 有关的恒等式、不等式、一些整除问题、几何问题等相关 数学问题都可以使用数学归纳法来加以证明,不仅有利于开拓视野,而且还有利 于训练推理论证方面的相关能力。用数学归纳法来求解一些用常规的数学分析方 法难以证明的题目,通常会得到意外的惊喜。

(2)在以后的高等数学深入学习中会频繁使用到数学归纳法,故而牢靠掌 握好数学归纳法这一数学方法可为往后的高等数学打下坚实的基础。

2。数学归纳法的具体表现形式

2。1 数学归纳法的原理

作为自然数相关命题证明的有效方法,其主要原理为递推原理,通过对 N 个 自然数的递推,实现命题从特殊性向一般性的转变。一般情况下,数学归纳法运 用在已有结论的数学猜想之中。由于数学归纳法具有科学而严谨的特点,对一些

特别的命题具有很好的应用性,在数学领域具有很大的意义。从自然科学的角度 进行数学归纳法的分析,从一种现象或者一种特点情况观察作为分析的切入点, 将对该现象有影响的规律进行归纳,数学归纳法是一种截然不同的方式,主要应 用在无限序列的证明当中,以排除数学定理中的特殊性,保证其正确进行。来自优W尔Y论W文C网WWw.YoueRw.com 加QQ7520,18766

本文通过剖析这种数学方法的基本原理,分析其在数学中的运用,以便更深 入地对其加以把握,如此以来在实践时才能技术纯熟,随心所欲,并试图为其具 体的运用提出启发性的意见或建议。

2。2 数学归纳法的具体表现形式

归纳法在一般情况下主要有 2 种方式:完全归纳法和不完全归纳法。本文运用的是完全归纳法——这一方法又包含 2 种方式:有限数学归纳法与超限数学归 纳法。超限数学归纳法可在数学函数过程中所应用,而前一种方法又可以分为第 一和第二数学归纳法。在第一数学归纳法中,假定当 n 1 ,P(n) 成立,同时,P(n) 内自然数不大于 k , P(n) 对所有自然数 n 均成立。而第二数学归纳法中则是假定 对于 n 1 ,P(n) 成立,当 n k 时,P(n) 依然成立,因此,当 n k 1时,P(n) 对 于任何自然数 n 依然成立。可以根据两种归纳法之间的内在联系,对其进行等级确定。举个例子:证明: 假设 P(n) 中 n 1确定性质,假设 k n ,这种情况,P(n) 性质成立,尤其是 P(k ) 成立时,能够对 P(k 1) 做出验证。

2。3 数学归纳法的分类及简析

2。3。1 第一数学归纳法

第一数学归纳法在实际运用中,其方法一般可以总结为以下三个步骤:(1) 归纳奠基:证明 n 1 时命题成立;(2)归纳假设:假设 n k 时命题成立;(3)归 纳递推:由归纳假设当 n k 1 时判断成立[1] 。因此,原来的判断对于所有的正整 数都可以站得住脚。数学归纳法的正确性

2。3。2 第二数学归纳法论文网

其原理是设定一个同自然数 n 有关的命题,若:(1)当 n 1 时,命题成立;

(2)假设当 n k 时,命题成立,据根据这一前提可以作出判断,当 n k 1时, 命题则同样成立。 则命题对于任何自然数 n 来说皆成立[1] 。

2。3。3 倒推数学归纳法

设对于 n  n0( n0   1 ),命题 P(n0 ) 成立,若由 P(k ) 成立能推出 P(k 1)( k  n0 )

成立,则对于 n 1,2, n0 ,命题 P(n) 均成立

。当然,除上述表现形式外,

归纳法还有其他表达方式。

3。数学归纳法的应用

3。1 数学归纳法在初等代数中的应用

数学归纳法在初等代数中应用广泛,包括但不限于整除问题、不等式问题、 恒等式问题、三角函数问题等。以整除问题的证明为例。

上一篇:中考试题中折叠问题例析
下一篇:常微分方程通解中任意常数的独立性

小学数学课后作业的设计策略

中学数学课堂中多媒体教学运用研究

论数学课堂的师⽣生互动

行列式解法归纳及应用

中学数学探究式教学策略及其研究

解题回顾与数学思维品质

数学教学中学生逆向思维的培养

四十岁男人看什么书提升...

國家三胎政策最新发布2...

中华小吃翻译英文论文文献综述和参考文献

简析农村初中语文教學资...

社会舆情国内外研究现状

加强高校大學生预备党员...

金融混业经营风险管理开题报告

陕西三胎计生政策最新,...

人机工程学的多功能跑步机设计及研究

天顶落茬双子座,天顶星...