摘要:连续方程在数学与物理的学习中具有重要的作用,所以研究其可积离散意义重大.而对于可积离散化的研究,求出其孤子解是最为重要的一步.本文在介绍孤子理论的基础上给出了KdV和mKdV可积离散化的具体步骤,并且利用 小参数扰动法分别求出其孤子解.通过对得到的孤子解的研究,来讨论此方法的可积性.33768 毕业论文关键词:孤子解; 可积离散化;KdV方程;mKdV方程; 小参数扰动法
The Integrable Discretization of Several Continuity Equations
Abstract: The continuity equation plays an important role in mathematics and physics .The sense is great. For the integrable discretization, obtain the soliton solution is the most important step. In this paperarning, Introduction of soliton theory and integrable discretization of the specific steps, and the use of hirota small parameter perturbation method are derived for the soliton solution. Through the study of the soliton solutions, to discuss the method of integrable
Keywords:Solitonsolution;Theintegrablediscretization;KdVequation;MKdVequation;
Small parameter perturbation method
目 录