毕业论文
计算机论文
经济论文
生物论文
数学论文
物理论文
机械论文
新闻传播论文
音乐舞蹈论文
法学论文
文学论文
材料科学
英语论文
日语论文
化学论文
自动化
管理论文
艺术论文
会计论文
土木工程
电子通信
食品科学
教学论文
医学论文
体育论文
论文下载
研究现状
任务书
开题报告
外文文献翻译
文献综述
范文
最美公式欧拉公式的美
摘要 欧拉公式是
数学
最美公式之一,也是最具有美学代表性的公式.欧拉公式完美的将数学中五个最重要的常数 、 、 、0、1结合于一体,赋予公式独特的和谐与奇异美.本文从不同的角度即分解和组合来探讨欧拉公式的美,先阐述了五个重要的常数各自本身的意义与价值美,后阐明欧拉公式整体的和谐与奇异美.40018
毕业论文
关键词 欧拉公式;数学美;组合美;分解美
古希腊哲学家、数学家柏拉图说:“美便是恰当”.而在欧拉公式 中蕴含着数学美,它将数学中经常用到的五个常数: 、 、 、0、1完美的结合在一起,德国著名数学家称欧拉公式为数学领域中最杰出的公式之一,也有数学家称其为世界最优美的公式,无论是哪个领域的杰出者都能感受到欧拉公式的无限魅力.
下面我将从欧拉公式的分解和组合来描述欧拉公式的美.
1 分解之美
1.1数字0、1与算术之美
阿拉伯数字虽然被称为阿拉伯数字,但它最早的发现者其实是印度人,经过阿拉伯人传播到欧洲并广泛流传的.印度的数学家最早发现了零,刚开始用o或0来表示,在梵语中是空的意思,后来流传到日本才逐渐演变成现在的形状,日本人将它称为零,译为“无”或“没有”. 阿拉伯数字中我们最先认识并且对数学最重要的阿拉伯数字就是0和1.中性数0,是空间的原点,既不是正数也不是负数,端庄和谐,加之减之而不变,乘之则归尽,除之则无穷.自然数1,亦是最基本的整数单位,也是自然数的原始始祖.由于数字0和1的出现,使得全世界的人都可以随意的笔算.如下列一组数据,整体看上去给人一种和谐对称美的感觉,不仅在计算上给我们带来极大地方便,在视觉上也完美的呈现了数学中的对称美.
1×1=1
11×11=121
111×111=12321
1111×1111=1234321
11111×11111=123454321
111111×111111=12345654321
1111111×1111111=1234567654321
11111111×11111111=123456787654321
111111111×111111111=12345678987654321
1.2 虚数单位 与代数之美
虚数 的产生可与二次方程式的求解联系在一起,例如求解 ,根据求根公式 ,看到这样的答案,大部分人都会感到奇怪, 是什么样的数呢?在此之前大家都有一个特殊的认识,一直规定 里必定是0或者必定是正数,换一种说法必定是 的数,在人们的印象中 , , ,所以根本就不会有平方为负的数,而 是平方为负的数.这里出现的平方为负的数 与以前的数不一样,它不是实数,而是一种“想像中的数”,也就是指不是实际存在的数,我们称之为这种数叫虚数,正确的说应称它为纯虚数.即虚数是平方为负的数,不是“空”和“无”之类意思,而是人们灵活的头脑中想像出来的一种新数.作为表示虚数的符号,取其
英文
字母开头 ,定义虚数为 .
虚数的美可以表现在以下五个方面:
① .虚数的定义是平方为负的数,虚数单位 为平方为 的数,即 或 .
②出现了不分大小关系的新数.复数的一般表现形式是 ,但是复数不是实数,没有大小之分,这也是虚数 的其中之一的奥秒.
③ 是1、 、-1、- 四个数中的一个数.由 ,可以得出 , , ,通过上述计算,不难发现 的偶次方为 或- , 的奇次方为 .故可证得 是1、 、-1、- 四个数中的一个数.
④共轭复数的和与积都为实数. , .
⑤复数平面上的所有点是与复数 一一对应的.早在18世纪,德国数学家高斯想出了复数平面,并且引入了图解表示.复数平面的横轴叫做实轴,可以刻画所有的实数,复数平面的纵轴叫做虚轴,可以刻画所有的复数.那么所有的复数 都可以在复数平面(高斯平面)上表示出来.
共3页:
上一页
1
2
3
下一页
上一篇:
例说图解法在高中数学解题中的应用
下一篇:
微分中值定理及其应用
Taylor公式及其在数学解题中应用
Talor公式在数学解题中的应用
高斯型积分公式的原理
命题公式的主合取范式
判断命题公式类型的方法
余元公式的证明方法及其应用
泰勒公式和应用
10万元能开儿童乐园吗,我...
国内外图像分割技术研究现状
公寓空调设计任务书
C#学校科研管理系统的设计
志愿者活动的调查问卷表
承德市事业单位档案管理...
医院财务风险因素分析及管理措施【2367字】
中国学术生态细节考察《...
神经外科重症监护病房患...
AT89C52单片机的超声波测距...