摘要:为了便于讨论流体力学方程组的数学结构及解的适定性理论,需要我们用 不同的坐标系描述方程组。当我们研究流体力学方程组时,拉格朗日坐标下的形 式往往要比欧拉坐标下的形式更为简单。因此需要把欧拉坐标下的方程组转化成 拉格朗日坐标形式。本文主要是先把高维欧拉方程组转化为球对称欧拉方程组, 再将球对称欧拉方程组转化为拉格朗日坐标形式。主要运用了多元函数求导的链 式法则,积分与路径无关等数学知识。66270

毕业论文关键字: 欧拉坐标;拉格朗日坐标;多元函数求导的链式法则;积分与路径无 关

The Lagrange coordinate form of the spherically symmetric Euler equations

Abstract: For the conenience of discussion of the nature of the fluid and the well - posdness theory of solutions, it is necessary to study the different coordinations. When we inestigate the fluid equations, the form of equations in Lagrange coordinate is simpler than the form of equations in Euler coordinate. Thus we need to transform the equations under Euler's coordinates into Lagrangian coordinates. In this paper, we first transform the multi-dimensional Euler equations into spherically symmetric Euler equations, and then transform the spherically symmetric Euler equations into Lagrangian form. Here, we mainly use the knowledge such as the chain rule of multiple functions, integral has nothing to do with the path.

Key words: Euler coordinates; Lagrange coordinates; the chain rule of multiple function deriation; integral has nothing to do with the path

目录

摘要   . 2 

1 绪论  .. 1 

1.1 欧拉方程组的来源  1 

1.2 本课题的意义  4 

2  基础知识  5 

2.1 积分与路径无关 . 5 

2.2 多元函数求导的链式法则 . 8 

2.3 欧拉坐标,拉格朗日坐标定义 . 9 

3  球对称欧拉方程组的拉格朗日坐标形式 .. 11 

3.1 高维欧拉方程组到球对称欧拉方程组的转换 .. 11 

3.2 球对称欧拉方程组的拉格朗日坐标形式 .. 13 

4  总结 .. 15 

5  致谢 .. 16 

6  参考文献 .. 17 

1  绪论

1.1 欧拉方程组的来源

我们将对流体力学 创建其动力学方程组。所谓 理想流体,是指不考虑粘性 及热传导的流体,但与我们想象的有些偏差实际的流体,不仅具有粘性而且还是 具有热传导的,但理想流体在很多情况下,是对实际流体的一个合理近似 。比如, 在探索飞行器周围的流场分布情况时将进行如下的假设目的是便于研究即, 除飞行器外面附近 一薄层中通常必须考虑粘性 及热传导的因素外,在流场中 其余的部分均可当作理想流体来进行讨论;即使当整个流场均为理想流体时,也 能得出非常合理的结果。所以,对理想 流体的讨论 ,即具有理论上的重 要意义, 又具有 实际上的重大价值 。另外,这里探讨 的是可压缩的流体 ,指的是 气体或在高压下的液体。

上一篇:MATLAB上海车牌拍卖中标价估计模型的研究
下一篇:Arena航班计划的仿真与优化研究

基于决策树算法的篮球联赛预测

基于对称正定矩阵一道习题的简单运用

南阳市初中篮球教师基本情况现状调查问卷

对称矩阵的正定性探讨

对称性在积分计算中的应用研究

对称性在各类积分计算中的应用

浅谈对称矩阵的性质及应用

互联网教育”变革路径研究进展【7972字】

我国风险投资的发展现状问题及对策分析

网络语言“XX体”研究

新課改下小學语文洧效阅...

ASP.net+sqlserver企业设备管理系统设计与开发

老年2型糖尿病患者运动疗...

张洁小说《无字》中的女性意识

麦秸秆还田和沼液灌溉对...

LiMn1-xFexPO4正极材料合成及充放电性能研究

安康汉江网讯