摘 要: 孤子方程的研究已经成为非线性科学领域中极具发展潜力的课题之一. 孤子方程的解可以通过许多方法得到. 其中, Hirota方法在众多方法中是比较重要和直接的,它主要是把非线性方程转化成双线性方程,然后通过摄动法找到孤子方程的精确解.9248
本文考虑的是一个重要的孤子方程:(2+1)-文修正BKK方程,运用Hirota方法将它化为双线性方程, 从而得到单孤子解、双孤子解以及n孤子解.
关键词: Hirota方法; (2+1)-文修正Broer-Kaup-Kupershmidt孤子方程;
n-孤子解
The Application of Hirota in several Partial differential Equations
Abstract: The soliton equation is one of the most prominent subject in the fields of nonliear science.In this paper, we consider a modified Broer-Kaup-Kupershmidt equation.there are sevral systematicapproehes to obtain solutions of soliton equation.The Hirota’S direct method has been proved to be one of the most important method in soliton theory.
In the paper,the modified Broer-Kaup- Kupershmidt equation are transformed into a bflinear differential equation,Some exact solutions for the eqations are obtained by Hirota method.
Key words: Hirota method; (2+1)-dimension modified Broer-Kaup-Kupershmidt soliton equations; N-soliton solution
目 录