毕业论文
计算机论文
经济论文
生物论文
数学论文
物理论文
机械论文
新闻传播论文
音乐舞蹈论文
法学论文
文学论文
材料科学
英语论文
日语论文
化学论文
自动化
管理论文
艺术论文
会计论文
土木工程
电子通信
食品科学
教学论文
医学论文
体育论文
论文下载
研究现状
任务书
开题报告
外文文献翻译
文献综述
范文
光电图像动态目标跟踪技术研究(5)
得到去噪后的图像。常用的空域滤波有均值滤波、中值滤波等。它们对不同的噪声有
不同的去噪特性,均值滤波可以有效的滤除高斯噪声,而中值滤波对脉冲噪声和椒盐
噪声的去噪能力很好[13]。
研究发现.拍摄到的视频图像中椒盐噪声的影响较严重,同时由于均值滤波不只
是把干扰去除,还常把图像的边缘模糊,不利于图像进一步的分析。而中值滤波既能
消除噪声又能保持图像的细节。因此,我们选择中值滤波来进行滤波除噪。
中值滤波器是一种非线性的平滑滤波器。其中,输入像素由领域包含的像素中值
替换,象征性的表示为:
v(m, n) = median {y(m-k, n-l), (k, l) ∈W} (2.1-2)
其中 W 表示适当选择的领域。本文中令 W 为 3×3 的像素区域,作为遍历模板。
中值滤波具体步骤如下:
1)令 W中心依次与各个像素位置重合,实现对图像中所有像素的遍历。
2)读取 W 中各个像素的灰度值,并将这些值进行排序(考虑到实时性需求,用快
速排序法)。
3)取排序后的中间值,将其赋给中心位置v(m, n)的像素。
2.1.3 实验结果
(a)未经滤波处理的灰度图像 (b)中值滤波后的灰度图像
图 2.1 图像的中值滤波
2.2 图像纹理和边缘检测
2.2.1 图像纹理
图像的纹理是图像的某种局部性质,或是对局部区域中像素之间关系的一种度量。
可以认为,纹理是由许多相互接近的、相互编织的像元构成,它提供了图像区域的平
滑、稀疏和规则等特性。纹理的描述常常使用统计法、频谱法和结构法,以及这三种
方法的混合方法,其性质可分为空间性质、频域性质和结构感知性质三类。常用的纹
理描述算子包括空间性质的灰度共生矩阵、频域性质的傅立叶变换和小波变换、结构
感知性质的粗细度、对比度和方向性等,以及它们的混合算子等。
2.2.2 Sobel算子边缘检测
图像处理中,边缘不仅仅是指物体边界的线,还应该包括能够描绘图像特征的线
要素,因此通过所提取的边缘可以识别出目标、测量目标的面积和周长等,边缘检测
与提取的处理进而也可以作为更为复杂的图像识别、图像理解的关键预处理步骤来使
用。
实际图像中,即使用眼睛可清楚地确定为边缘,但在灰度变化模型中也有一些会
变钝、灰度变化量会变小,从而使得提取清晰的边缘变得十分困难,为此人们提出了
基于微分的边缘检测与提取法和基于模板匹配的边缘检测与提取法。
边缘是赋予单个像素的性质,用图像函数在该像素一个邻域处的特性来计算。它
是一个具有强度和方向的矢量,其强度等于梯度的强度。这里简单介绍下面阴影检测
中采用的Sobel算子边缘检测。
Sobel算子是基于梯度算子3×3的领域的。其卷积模板由下图的两个核定义:
图 2.2 Sobel 算子水平和垂直边缘卷积核
取水平垂直两个方向的最大响应作为边缘:
G(i,j) = max(|
共5页:
上一页
1
2
3
4
5
下一页
上一篇:
SRA硅微谐振式加速度计非线性振动特性研究
下一篇:
基于圆光栅的莫尔体层析投影特性研究
炼焦煤动态挥发份测定方法的开发
高频He-Ne激光电源研究及制作
三维地质模型的金属矿床...
地质空间三维动态建模方法研究【1756字】
地理信息系统的基本技术...
固阳县耕地质量动态监测研究【3635字】
基于机器视觉的DLP投影仪...
国内外图像分割技术研究现状
承德市事业单位档案管理...
公寓空调设计任务书
10万元能开儿童乐园吗,我...
C#学校科研管理系统的设计
医院财务风险因素分析及管理措施【2367字】
中国学术生态细节考察《...
AT89C52单片机的超声波测距...
志愿者活动的调查问卷表
神经外科重症监护病房患...