目录
摘要.I
AbstractII
目录.Ⅲ
图清单.IV
表清单.IV
1绪论.1
1.1氰化钠的研究背景1
1.2氰化钠的研究目的和意义1
1.3本文的主要内容2
2理论基础.3
2.1密度泛函理论3
2.2第一性原理4
2.3固体结构与高压相变4
2.4能带理论5
2.5弹性特征6
2.6计算运用的软件6
3NaCN的结构相变、力学及电子特性7
3.1NaCN压致结构相变研究7
3.2弹性特征.10
3.3电子特性研究.12
4总结与展望.15
参考文献.16
致谢.18
1 绪论
1.1氰化钠的研究背景 碱金属元素与氰基通过化合作用形成碱金属氰化物,在一般的化学反应中,氰基很难被分解,这是因为其中碳原子和氮原子通过叁键相连形成氰基,这种结构使得氰基非常稳定,而且因为性质与卤族元素相近,所以又称为拟卤素。在工业生产中氰化钠是一种重要化工原料,在医药化工研究方面比较多,它在但是在材料研究中并不是很热门。 本文所研究的氰化钠(NaCN)是简单离子晶体,与氰化钾(KCN)和氰化铷(RbCN)类似,在常温常压条件下都是典型离子晶体 B1(NaCl)型结构(空间群 Fm3m)[1]。人们对高压条件下的氰化钠的物理化学性质进行了一些研究:1985年,K. Strössner 等人通过利用拉曼光谱和能量色散X射线技术在压力高达27 GPa范围内研究了碱金属氰化物,发现了氰化钠在 0 GPa到27 GPa压力范围内有高温立方相 I(空间群 Fm3m)、部分对齐正交相 A(空间群Immm)和反铁电有序相B(空间群Pmmn)、源`自,优尔.文;论"文'网[www.youerw.com单斜高温相 IVa(空间群 Cm)[2]。不同于碱金属氰化物的其他成员,在高压下 NaCN不经历B1 -B2转变,而是形成低对称结构[16]。在低于50 GPa的压力范围内,对 NaCN- IIA(斜方晶系,Immm),NaCN -IIB(斜方晶系,Pmmn) ,NaCN- III(单斜晶系,Cm),与 NaCN-IV(四方晶系,P4mm)的物理、化学性质的变化进行观测与研究,但在压力低于 20 GPa的条件下发现:在常温常压条件下 NaCN 的结构为NaCN-I(立方晶系, Fm3m),斜方晶体系 NaCN -IIA(Immm)在压力条件为 4 GPa时变为NaCN -IIB(Pmmn),在压力条件为 8 GPa时转化为NaCN- III (Cm),在压力达到15 GPa时转化为NaCN-IV (P4mm) [1]。