摘要:本文研究了磁悬浮系统的原理、组成、数学模型、以及解决系统稳态性能PID和跟踪控制两种控制算法和基于MATLAB的仿真实验。电磁铁绕组中通一定的电流可对小钢球产生一定方向的电磁力,通过控制电磁铁绕组中的电流的大小使电磁力与钢球的重力相平衡,钢球可以保持平衡状态并悬浮在空中。根据电磁力与小球重力平衡等关系列出方程,利用拉普拉斯变换得到小球悬浮的数学模型。得到开环传递函数后,分别使用了PID控制算法和跟踪控制算法,构成两种控制器对磁悬浮小球系统实现闭环稳定控制,在MATLAB中进行闭环控制的仿真并分析了仿真结果。并根据仿真结果总结了两种算法在应用中的优缺点。本课题对单自由度磁悬浮球系统的研究可以进一步提高磁悬浮系统运行的稳定性。77914
毕业论文关键词:磁悬浮球系统;PID控制;跟踪控制;MATLAB
Design of Tracking Control System for Magnetic Suspension
Abstract: In this paper, the principle, composition and mathematical model of the magnetic levitation system are studied, and two kinds of control algorithms based on MATLAB and the simulation experiment based on MATLAB are discussed。 Electromagnet winding through a certain current can produce a certain direction of the small ball of electromagnetic force, by controlling the size of the current in the electromagnet winding electromagnetic force and the balance of the ball, the ball can be balanced and suspended in the Air。 According to the relationship between the electromagnetic force and the gravity balance of the ball, the mathematical model of the ball suspension is obtained by Laplace transform。 After the open-loop transfer function is obtained, the PID control algorithm and the tracking control algorithm are used respectively, and the two controllers are used to realize the closed-loop stability control of the magnetic levitation ball system。 The simulation results are analyzed by the closed-loop control in MATLAB。 And summarize the advantages and disadvantages of the two algorithms in the application based on the simulation results。 The research on the single-degree-of-freedom magnetic levitation system can further improve the stability of the magnetic levitation system。
Keywords:Magnetic levitation system;PID control;Tracking control;MATLAB
目 录
1绪论 1
1。1 课题的目的和意义 1
1。2。1 国际研究 1
1。2。2 中国研究 2
1。3 课题所做的主要内容 3
2磁悬浮系统简介及磁悬浮建模 4
2。1磁悬浮系统简介 4
2。2磁悬浮球系统数学模型的建立 4
2。2。1 系统非线性模型的建立 5
2。2。2系统模型线性化处理 6
2。2。3数学模型的建立 6
2。3控制模型的选择 7
2。3。1 电流控制模型 7
2。3。2电压控制模型 7
2。3。3方案的确定 8
3 PID 控制器设计及仿真研究 9
3。1 PID控制器 9
3。1。1 PID控制器的基本原理