菜单
  

    matches. Consider for example the case when a landmark is occluded for a
    short period of time. A spatial compatibility test would not have any information
    on the history of observations of such landmark, and might still be trying
    to wrongly associate it with a neighboring observed feature. If the algorithm
    succeeds in incorrectly associating the occluded feature, the new observation
    will not be consistent with the initial measurement, thus producing large error
    in the estimate for the localization of that landmark, while at the same time
    underestimating its covariance. Given that the map covariance is fully correlated,
    starting with the next iteration of the algorithm, that wrong value for
    the uncertainty would be propagated to the rest of the landmark locations,
    and that of the robot as well; leading to pergence in the map, and ultimately
    breaking down the entire estimation approach to SLAM.
    To aid in those situations in which landmark observations might not be
    consistent in time, we propose a new set of temporal landmark quality models,
    and show how by incorporating these models, the overall estimation-theoretic
    approach to SLAM is improved. With the aid of these models, a new temporal
    landmark quality test is presented to aid in differentiating between the
    imprecision in the localization of a landmark, and the uncertainty in its very
    existence. Thanks to this test we are able to remove weak landmarks from the
    map. Landmarks that would most likely be a product of false data association
    or spurious observations, and that if considered, would otherwise induce
     
    Fig. 1.1. The blue dots indicate sensor raw data coming from a laser range finder,
    and the blue ellipses represent 2σ confidence level curves on the wall end point
    estimates. The green lines represent walls inferred from consecutive readings. The
    red lines indicate the estimated robot trajectory.
    undesired localization errors. Temporal landmark compatibility is addressed
    in Section 1.3.
    Finally, in Section 1.4, our planar mobile robot configuration is used to
    evaluate the original full-covariance Extended Kalman Filter algorithm to Simultaneous
    Localization and Map Building as reported by Dissanayake et al
    [31], including the spatial landmark compatibility tests [70], versus our improved
    algorithm, the EKF-SLAM-LV, with both temporal and spatial landmark
    quality tests, both in the presence of various noise levels, and ultimately,
    in cases with limited field of view and extreme data missassociation.
    同时定位和地图构建本地感知发生,以自我为中心的参照系的机器人。为了确保当地的代表之间的通信环境建造的具有里程碑意义的提取过程,和全球表示包含在一个地图,机器人必须估计自己的位置这张地图。论文网
    使用随机模型在移动地图构建和本地化机器人技术近年来获得了许多流行。特别兴趣是使用预测估计机器人位置和过滤器不确定性,从传感器读数同时更新这些估计同时建立一个增量的环境地图。
    最重要的限制之一estimationtheoretic等的应用地图构建方法和本地化是数据关联问题。数据关联是指匹配问题的观察以前学习环境中的元素。一些技术可以用于缓解数据关联问题,比如地标的跟踪机器人从一个位置到另一个,或者通过使用高效测试sceneto -里程碑式的匹配假说验证模型。显然总是有妥协的可能性完全不变的标志性特征这样的描述特征的提取和困难从原始传感器数据。
  1. 上一篇:树莓π与GPS接收器英文文献和中文翻译
  2. 下一篇:高压泵反渗透设备列车英文文献和中文翻译
  1. 汽车内燃机连杆载荷和应...

  2. 机械手系统英文文献和中文翻译

  3. 固体氧化物燃料电池英文文献和中文翻译

  4. 船舶运动仿真系统英文文献和中文翻译

  5. 新能源空调系统设计英文文献和中文翻译

  6. 正交试验回归法和响应曲...

  7. 机械设计制造及其自动化英文文献和中文翻译

  8. g-C3N4光催化剂的制备和光催化性能研究

  9. 上市公司股权结构对经营绩效的影响研究

  10. C++最短路径算法研究和程序设计

  11. 高警觉工作人群的元情绪...

  12. 现代简约美式风格在室内家装中的运用

  13. NFC协议物理层的软件实现+文献综述

  14. 江苏省某高中学生体质现状的调查研究

  15. 浅析中国古代宗法制度

  16. 中国传统元素在游戏角色...

  17. 巴金《激流三部曲》高觉新的悲剧命运

  

About

优尔论文网手机版...

主页:http://www.youerw.com

关闭返回