摘要通过最小二乘法求出变量之间近似的关系式。首先对变量的关系做出相应的分析,如线性拟合和非线性拟合。非线性拟合多种多样,往往关系复杂,曲线拟合的难度大。所以要先对非线性拟合做一定的变换转换为线性拟合。而非线性拟合中最具代表的是多项式拟合,所以主要以多项式拟合为突破口研究其公式与线性拟合的关系再顺势推导出其他非线性与线性之间的公式。
利用最小二乘法解决曲线拟合的方法很多,最简便的是MATBLE,利用其编程可以得出多项式的系数和多次项拟合的曲线图。并运用实例来展示最小二乘在实际中的运用,在此基础上阐述了最小二乘的原理。73883
毕业论文关键词:最小二乘法;线性拟合;非线性拟合;多项式拟
Abstract By the least square method to find the approximate relation between variables。First, makes the corresponding analysis on the relationship between the variables, such as linear and nonlinear fitting。 Nonlinear fitting is varied, and often relationship is complex, the difficulty of curve fitting。 So want to make certain transformation for nonlinear fitting first converted to linear fitting。 And nonlinear fitting polynomial fitting is one of the most representative in, so the main breakthrough of polynomial fitting to study the formula and the linear fitting relationship to conveniently between other nonlinear and linear formula is deduced。
Using the least squares solution to the curve fitting method are many, the easiest is MATBLE, its programming can be used to draw a polynomial coefficient and fitting curve。 And use examples to show the least squares in the actual use, on this basis this paper expounds the principle of least squares。
Key words: least square method;linear fitting; nonlinear fitting:;Polynomial fitting
目 录
摘 要 I
Abstract II
1 绪 论 1
1。1 引言 1
1。2 本文的研究内容 2
2 最小二乘法的曲线拟合 3
2。1 最小二乘法的定义 3
2。2 最小二乘法的原理 3
2。3 最小二乘法的公式 3
2。4 曲线拟合最小二乘的意义 4
3 最小二乘法的应用 5
3。1 线性拟合 5
3。1。1 基本公式 5
3。1。2 直线拟合 5
3。2 一般多项式拟合 6
3。2。1 基本公式 6
3。3 多项式拟合模型的应用 7
3。3。1 多项式拟合模型在GPS病态拟合高程中的应用 7
3。3。2 多项式拟合模型在GPS水准测量中的应用 8
3。3。3 多项式拟合模型在EDM端点问题的处理上的应用 9
3。4 可化为线性的非线性拟合 11
3。4。1 基本概念