摘要传统的微机械惯性开关触点使用固态金属,而固态金属触点在使用时会不断磨损,这将导致接触不灵敏,触点之间的电阻加大,抗干扰能力减弱。随着科技的发展,需要一种能克服上述缺点的惯性开关,而流体惯性开关满足这种需求。
本次毕设的任务是设计一种能够应用于加速度低于4000g环境中的流体惯性开关。要想完成设计,必须了解流体惯性开关的有关知识。在阅读大量相关论文基础上,对符合该要求的流体惯性开关进行了理论分析,并借助VOF模型对结构进行仿真。通过不断改变微阀门宽度、微通道深度等结构参数来优化设计,最终得到一种合理的结构设计,Fluent软件仿真结果验证了这种结构具有阈值特性。
在论文的最后,总结了仿真过程中遇到的问题,并提出了一些新的想法 20754
关键词: 惯性开关 微流体 VOF模型 毕业论文设计说明书(论文)外文摘要
Title Structure design and performance analysis of a inertial switch based on microfluidics
Abstract
Traditional micro-mechanical inertial switch based on “solid-solid” metal contacts has the disadvantages of contact wear, contact instability, high contact resistance and poor anti-interference ability. With the development of science, there is a greater demand for a better inertial switch, which could overcome the shortcomings of micro-mechanical inertial switch. Micro-fluidic inertial switch fits the bill.
The task of this graduation project is to design a Micro-fluidic inertial switch. It could be applied to the condition that the acceleration of switch less than 4000g. To complete the design, I must understand the knowledge of Micro-fluidic inertial switch. This paper analyzed the principle of Micro-fluidic inertial switch theoretically and simulated the structure by VOF model. The optimization of the structure is done by changing the design parameters of micro channel. A reasonable structure was designed at last. Simulated by Fluent, switching threshold of this structure was
verified
At the end of the thesis,I summarized the problems in the process of simulation and put forward some new ideas.
Keywords inertial switch micro-fluidic VOF model switching threshold
目 次
1 引言 1
1.1 选题背景及意义 1
1.2 MEMS技术综述 1
1.3 MEMS流体惯性开关的研究现状 2
1.4 本文的主要工作 3
2 MEMS流体惯性开关的理论基础 4
2.1 流体力学的基本理论 4
2.2 流体流动的研究方法 5
3 MEMS流体惯性开关的阈值和结构 7
3.1 MEMS流体惯性开关的阈值 7
3.2 MEMS流体惯性开关的结构 8
4 MEMS流体惯性开关的仿真与优化 11
4.1 MEMS流体惯性开关的仿真 11
4.2 MEMS流体惯性开关的优化 18
结 论 25
致 谢 26
参考文献27
1 引言
1.1 选题背景及意义
当前,弹药系统的发展方向是智能化和多功能化。微机电系统(micro-electromechanical systems, MEMS)这种技术的出现能够满足弹药系统的发展要求[ ]。
欧美国家早已开始在引信中采用MEMS机械器件代替传统的机械器件,并且取得了一定的成果。相比于以往所用的机械引信,MEMS引信在体积上可降低1~2个数量级能节省有限的空间,有的引信存储寿命可达20年以上,且具有高可靠性[ ]。引信尺寸的缩小能释放更多的空间,释放的空间可用来增加弹药,大幅增强杀伤力。