摘要单兵式火箭弹是在膛内完成发动机火药气体燃烧的单兵携行使用的传统步兵近战武器,非常适用于高机动的小范围作战,但是其超过有效射程后命中精度减小,而且散布也会很大,为了改善其飞行性能、提高控制精度,对于火箭弹飞行控制器的研究便具有重要意义。目前有关火箭弹控制器设计的方法有很多种,而滑模变结构系统具有不受系统摄动和外界扰动影响的优点,基于对高精度姿态控制和角速度约束的控制要求,本文选择滑模变结构控制方法来探讨火箭弹的姿态控制器设计。我们以飞行器纵向通道控制为例,建立以过载为控制量的控制系统,运用MATLAB搭建单兵式火箭弹的系统模型,最后在Simulink仿真环境下进行了仿真分析,通过仿真分析结果我们知道,控制器效果良好,满足高精度控制需要,印证了基于滑模变结构理论来设计飞行控制器的可行性。27228
关键词 单兵式火箭弹 飞行控制器设计 滑模变结构理论 毕业论文设计说明书外文摘要
Title Inpidual type missile fight control system design of easy sliding
Abstract
Inpidual rocket is made within the chamber gunpowder gas combustion engine soldier get exercise with traditional infantry melee weapons, very suitable for high mobility, a small scale but after its more than effective range accuracy is reduced, and spread can also is very big, in order to improve the flight performance and improve the control precision, it is of great significance on the study of rocket flight controllers. At present about the rockets controller design method has a lot of kinds, the sliding mode variable structure system is not influenced by system perturbation and external disturbances, the advantages of based on high precision attitude control and control requirement of the angular velocity constraints, this paper choose the sliding mode variable structure control method to explore the attitude controller design of rocket. Aircraft longitudinal channel control, for example, we establish a overload for the control of quantity control system, using MATLAB to build inpidual type rocket system model, and finally simulated in Simulink environment, through the simulation analysis results we know that the controller has good effectiveness, meet the requirements of high precision control, the verification based on sliding mode variable structure theory to design the flight controller is feasible.
Keywords Rocket soldier, Flight controller design ,Sliding mode
目录
1 绪论 1
1.1 火箭弹飞行控制的目的、背景及意义 1
1.2 国内外研究概况及发展趋势 1
1.3 本课题的科研任务 3
1.4 拟采用的研究手段(途径) 4
1.5 本章小结 5
2 火箭弹数学模型的建立与计算 6
2.1 气动参数 6
2.2 坐标系的定义及转换 7
2.3 建立单兵式火箭弹数学模型 10
2.3.1 动力学方程 10
2.3.2 运动学方程 13
2.3.3 火箭弹纵向运动的方程组 14
3 滑模控制的基本原理 15
3.1 滑模变结构控制的基本概念 16
3.2 滑模变结构控制的基本定义 17
3.2.1 基本定义 17
3.2.2 趋近律 18
2.3 滑模变结构控制的设计 18
3.4 本章小结 19
4 基于滑模变结构理论的飞行器控制系统设计 20