摘要二十世纪中期以来,计算机技术的飞速进步和巨型机的出现,推动了计算流体力学CFD这门学科的高速发展,几乎涉及到流体流动、热交换、分子输运等现象的问题,都可以利用 CFD 进行模拟和分析。同时 CFD 的发展对空气动力学的研究产生了巨大的影响,风洞试验虽然结果的精确度较高,因为其模拟能力的局限性和试验的高成本,CFD成为空气动力学研究的主要工具之一。弧形翼是一种为管式发射而设计的翼型,具有独特的空气动力特性,在弹箭类武器设计中应用广泛。 本文借助 CFD 商业软件 FLUENT 对弧形翼-身组合体的超音速绕流流场进行了数值仿真研究。分析了弧形翼气动特性随马赫数、攻角的变化规律,重点分析了零攻角下弧形翼自诱导转动力矩的机制,为弧形翼的工程应用提供了一定的理论及技术支撑。 毕业论文关键词 弧形翼 翼-身组合体 超音速 空气动力 数值模拟
Title Numerical Simulation of Projectile With WAF At Supersonic Flow
Abstract Since the mid-twentieth century,the rapid progress in computer technology and the emergence of supercomputers promote the rapid development of computational fluid dynamics,we can take advantage of CFD simulation and analysis to solve almost the fluid flow, heat exchange, molecular transport phenomena. At the same time, the development of CFD has a tremendous impact on aerodynamic research, although the wind tunnel test gives us the results of high accuracy, because of its limitations of the ability to simulate and high cost, CFD has become one of the main tools of the aerodynamics research. Curved wing is an airfoil designed for the launch tube,with unique aerodynamic characteristics,widely applied in missiles weapon design. With the help of commercial CFD software FLUENT, numerical simulation of flow over wrap-around fin-body combination was done at supersonic flow. Change rules of wrap-around fin’s aerodynamic characteristics as a function of Mach Number and angle of attack was investigated. Mechnism of producing Self-induced rotational torque of wrap-around fin at zero angle of attack was analyzed selectively,it provides theoretical and technical support for wrap-around fins’basic and engineering application. Keywords wrap-around fin wing-body combination supersonic aerodynamic numerical simulation
目 次
1 绪论 . 1
1.1 课题研究目的及意义 . 1
1.2 弧形翼的空气动力学特性 . 1
1.3 国内外研究状况 . 1
1.3.1 国外弧形翼的研究情况 . 1
1.3.2 国内弧形翼的研究情况 . 2
1.3.3 弧形翼的数值模拟研究情况 . 2
1.4 本文主要内容 . 3
2 计算流体力学简介及CFD商业软件FLUENT . 4
2.1 计算流体力学的基本情况 . 4
2.2 FLUENT软件简介 . 5
2.3 CFD的基本模型 6
2.3.1 基本控制方程 . 6
2.3.2 雷诺湍流模型 . 7
2.4 FLUENT在空气动力学研究方面的应用验证 . 8
3 弧形翼—身组合体超声速空气动力学特性 11
3.1 弧形翼模型及计算 11
3.1.1 几何模型 11
3.1.2 网格生成技术 12
3.1.3 计算模型 13
3.1.4 仿真设置 14