(2) The starvation process of two high-activity anaerobic ammonium oxidation (anammox) granules during 50 days under 20°C and 4°C in parallel and subsequently reactivation characterization of the granules were evaluated in two upflow anaerobic sludge blanket (UASB) reactors. The results showed that starvation temperature had impact on the morphological and physical properties. Anammox granules stored at 4°C achieved relatively low decay rate, excellent nitrogen removal ability, and low PN/PS ratio after reactivation and elemental composition of anammox sludge was unchanged, which demonstrated that starvation at 4°C was more suitable for maintenance of structural integrity and granules stability during long-term starvation period. The nitrogen removal performance of anammox granules under different starvation temperatures could be reactivated after 4 days operation and the anammox activity could be fully restored within 8 days. Furthermore, anammox granules starvation at 4°C obtained a better recovery performance than that starvation at 20°C. In conclusion, no matter what the starvation temperature is, anammox granular sludge could be stored up to 50 days without running the risk of losing the integrity of the granules and metabolic potentials, and anammox granules performance after prolonged starvation could be reactivated within 4 days.
Keyword: anammox; granular sludge; preservation temperature; starvation
目 录
1 引言 5
2 保藏温度对厌氧氨氧化污泥的影响 5
2.1 概述 5
2.2 材料和方法 5
2.2.1 接种污泥和试验废水 5
2.2.2 试验装置和试验方法 6
2.2.3 测定指标与方法 6
2.3 结果与讨论 6
2.3.1 厌氧氨氧化颗粒污泥培养阶段 6
2.3.2 厌氧氨氧化颗粒污泥保藏阶段 7
2.4 结论 13
3 饥饿对厌氧氨氧化污泥的影响 13
3.1 概述 13
3.2 材料和方法 14
3.2.1 接种污泥和试验废水 14
3.2.2 试验装置 14
3.2.3 试验方法 14
3.2.4 测定项目与方法 15
3.3 结果和讨论 15
3.3.1 厌氧氨氧化颗粒污泥在饥饿阶段和重启动阶段的理性变化 15
3.4 结论 24
参考文献 24
致谢 27
1 引言
随着人们生活水平的提高和工业的高速发展,地球氮素循环受到了严重干扰,导致中间产物过多积累,引起氮素污染。水体中过量氮素物质容易诱发水体富营养化,造成水生植物和藻类过度繁殖,水体中溶解氧浓度急剧下降,鱼类无法生存,严重危害生态系统安全。水体对氮素污染物有一定的自净能力,然而我国氮素排放量远远超出环境容量,氮素污染亟需有效控制。
随着人们对氮素污染控制的广泛关注,逐渐涌现出了一大批行之有效的处理工艺。生物脱氮工艺较之物化法具有处理效率高、成本低的优点,应用较为广泛。传统的生物脱氮工艺为硝化-反硝化工艺,该工艺至今已有80多年的发展历史[1]。近些年涌现了许多新型生物脱氮工艺,这些新的技术引领了废水氮素控制的研究高潮。