其中:
Cm —比容量。
∮Q—循环伏安曲线的积分面积。
θ—扫描速率的数值。
m—活性物质的有效质量。
ΔV—电位窗口的区间值。
将样品制备为工作电极,以铂片为对电极、饱和甘汞电极为参比电极,构成三电极体系。在1M KOH电解质溶液中按照不同的扫描速率,在电位区间为0.0~0.5V下进行进行循环伏安测试。根据循环伏安曲线可知,电极的循环伏安曲线没有氧化还原峰的出现,表现为典型的赝电容行为。根据电容计算公式可以计算出样品氧化铁的比电容量。还研究了不同浓度的电解液与比电容的关系,可知在一定浓度范围内,随着电解液浓度的增大,比电容的值也在变大,当浓度选到1mol/L时,浓度对比电容值影响很小。电解液浓度与比电容的关系可能与电解液的导电能力有关,溶液的导电能力与离子的浓度成正比。
6.参考文献
[1] Barrer R M, Barrie J A, Slater J. Sorption and diffusion in ethyl cellulose. Part III. Comparison between ethyl cellulose and rubber[J]. Journal of Polymer Science. 1958, 27(115):177-197.
[2]李旭日,李瑞生. KIT-6新型介孔分子筛的合成与表征[J]. 河南化工. 2012(13): 35-37.
[3]孙锦玉,赵东元. “面包圈”状高有序度大孔径介孔分子筛SBA-15 的合成[J]. 高等学校化学学报. 2000(01): 21-23.
[4]朱金华,沈伟,徐华龙等. 水热一步法合成Ti-SBA-15 分子筛及其催化性能研究[J]. 化学学报. 2003, 第2 期: 202-207.
[5] Zhao D, Huo Q, Feng J, et al. Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures[J]. J.am.chem.soc. 1998, 120(24): 6024-6036.
[6] Wei J, Zhou D, Sun Z, et al. A Controllable Synthesis of Rich Nitrogen-Doped Ordered Mesoporous Carbon for CO2 Capture and Supercapacitors[J]. Advanced Functional Materials. 2013, 23(18): 2322-2328.
[7] 徐东芝,王美婷,李战军. 两步水热制备S 掺杂介孔TiO2 纳米粉末及其光催化性能表征[J]. 山东陶瓷. 2015(01): 3-6.
[8] 张花,杨华明. 碱性水热环境下制备MCM-41 介孔材料的分形表征[J]. 硅酸盐通报.2014(11): 2952-2957.
[9] 涂高美,庄海棠,于会贤等. 间苯三酚/甲醛和三嵌段共聚物F127 一步合成介孔炭材料[J]. 浙江师范大学学报(自然科学版). 2012(01): 70-74.
[10] Wilson B E, Rudisill S G, Stein A. Use of a sacrificial layer for an efficient EISA synthesis of mesoporous carbon[J]. Microporous & Mesoporous Materials. 2014, 197(5): 174-179.
[11] Harun T, Lehmann C W, Hans B, et al. Direct imaging of surface topology and pore system of ordered mesoporous silica (MCM-41, SBA-15, and KIT-6) and nanocast metal oxides by high resolution scanning electron microscopy.[J]. Journal of the American Chemical Society. 2008, 130(34): 11510-11517.
[12] Gao T, Huang K, Qi X, et al. Free-standing SnO2 nanoparticles@graphene hybrid paper for advanced lithium-ion batteries[J]. Ceramics International. 2014, 40(5): 6891-6897.
[13] Tian B, Liu X, Yang H, et al. General Synthesis of Ordered Crystallized Metal Oxide Nanoarrays Replicated by Microwave‐Digested Mesoporous Silica[J]. Advanced Materials.2003, 15(16): 1370-1374.
[14] Wang K, Wang Y, Wang Y, et al. Mesoporous Carbon Nanofibers for Supercapacitor Application[J]. Journal of Physical Chemistry C. 2008, 113(3): 1093-1097.
[15] Zhu Z, Hu Y, Hao J, et al. A three-dimensional ordered mesoporous carbon/carbon nanotubes nanocomposites for supercapacitors[J]. Journal of Power Sources. 2014, 246(3): 402-408.
[16] Lee J, Yoon S, Hyeon T, et al. Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors[J]. Chemical Communications. 1999, 21(21): 2177-2178.
[17] Vettraino M, Trudeau M, Antonelli D M. Synthesis and characterization of a new family of electroactive alkali metal doped mesoporous Nb, Ta, and Ti oxides and evidence for an Anderson transition in reduced mesoporous titanium oxide.[J]. Inorganic Chemistry. 2001, 40(9): 2088-2095.
[18] Liu H, Ping H, Li Z, et al. Crystalline vanadium pentoxide with hierarchical mesopores and its capacitive behavior.[J]. Chemistry An Asian Journal. 2006, 1(5): 701-706.
[19] Zhou W J, Xu M W, Zhao D D, et al. Electrodeposition and characterization of ordered mesoporous cobalt hydroxide films on different substrates for supercapacitors[J]. Microporous & Mesoporous Materials. 2009, 117(1-2): 55-60.
[20] Zhao D D, Xu M W, Zhou W J, et al. Preparation of ordered mesoporous nickel oxide film electrodes via lyotropic liquid crystal templated electrodeposition route[J]. Electrochimica Acta. 2008, 53(6): 2699-2705.
[21] Kirstin B, John W, Jan H, et al. Pseudocapacitive Contributions to Charge Storage in Highly Ordered Mesoporous Group V Transition Metal Oxides with Iso-Oriented Layered Nanocrystalline Domains[J]. J.am.chem.soc. 2010, 132(20): 6982-6990.