菜单
  
    在统计学中,线性回归是利用称为线性回归方程的最小平方函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析。这种函数是一个或多个称为回归系数的模型参数的线性组合。只有一个自变量的情况称为简单回归,大于一个自变量情况的叫做多元回归。(这反过来又应当由多个相关的因变量预测的多元线性回归区别,而不是一个单一的标量变量。)
    回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。7588
    在线性回归中,数据使用线性预测函数来建模,并且未知的模型参数也是通过数据来估计。这些模型被叫做线性模型。最常用的线性回归建模是给定X值的y的条件均值是X的仿射函数。不太一般的情况,线性回归模型可以是一个中位数或一些其他的给定X的条件下y的条件分布的分位数作为X的线性函数表示。像所有形式的回归分析一样,线性回归也把焦点放在给定X值的y的条件概率分布,而不是X和y的联合概率分布(多元分析领域)。
    线性回归是回归分析中第一种经过严格研究并在实际应用中广泛使用的类型。这是因为线性依赖于其未知参数的模型比非线性依赖于其位置参数的模型更容易拟合,而且产生的估计的统计特性也更容易确定。
    线性回归有很多实际用途。分为以下两大类:
    1.如果目标是预测或者映射,线性回归可以用来对观测数据集的和X的值拟合出一个预测模型。当完成这样一个模型以后,对于一个新增的X值,在没有给定与它相配对的y的情况下,可以用这个拟合过的模型预测出一个y值。
    2.给定一个变量y和一些变量X1,...,Xp,这些变量有可能与y相关,线性回归分析可以用来量化y与Xj之间相关性的强度,评估出与y不相关的Xj,并识别出哪些Xj的子集包含了关于y的冗余信息。
    线性回归模型经常用最小二乘逼近来拟合,但他们也可能用别的方法来拟合,比如用最小化“拟合缺陷”在一些其他规范里(比如最小绝对误差回归),或者在桥回归中最小化最小二乘损失函数的惩罚.相反,最小二乘逼近可以用来拟合那些非线性的模型.因此,尽管“最小二乘法”和“线性模型”是紧密相连的,但他们是不能划等号的
  1. 上一篇:气动技术的国内外研究现状
  2. 下一篇:智能配机软件国内外研究现状与发展趋势
  1. 新型语文课设计国内外研究现状

  2. 私人健身教练国内外研究现状

  3. 钛基复合材料制备工艺国内外研究现状

  4. 电动护理床国内外研究现状

  5. 半导体激光器国内外研究现状

  6. 网络控制系统国内外研究现状

  7. 国内外保温板跟踪切断机...

  8. msp430g2553单片机高精度差分GPS技术研究

  9. 高校计算机辅助教学英文文献和中文翻译

  10. 慕课时代下中学信息技术课程教学改革

  11. 数据采集技术文献综述和参考文献

  12. 洪泽湖常见水生经济动物资源现状的调查

  13. 油画创作《舞台》色彩浅析

  14. 松节油香精微胶囊文献综述和参考文献

  15. 浅议电视节目主持人的策划意识

  16. 浙江省嘉兴市典型蔬菜基...

  17. 糖基化处理对大豆分离蛋白功能的影响

  

About

优尔论文网手机版...

主页:http://www.youerw.com

关闭返回