菜单
  
    摘要本论文研究了不同碳纳米管负载碳化钨(WC),以及不同WC含量对催化剂性能的影响。使用微波加热法负载钯(Pd)催化剂。通过XRD、EDS与电化学测试对不同试样进行了对比。同时对偏钨酸铵(AMT)转化WC机理进行了研究。WC粒径可控制在8nm~9nm左右。Pd粒径在16nm左右。Pd/30%WCMH3峰值电流为5.007×10-3A,峰值电位为-0.1173V。在以不同KOH浓度作为电解液进行对比实验时,最高峰值电流出现在1M EtOH+2M KOH溶液中,其电流大小为8.49×10-3A,峰值电位为-0.153V。通过log(j)~log(CEtOH)线性拟合图可知KOH的反应级数约为0.7。EtOH与KOH的阳极转化因子为0.11。当KOH浓度和乙醇浓度均为1M时,在298.15K温度下的乙醇扩散因子为4.108×10-5cm2s-1。6060
    关键词:碳纳米管;偏钨酸铵;碳化钨;钯;直接乙醇燃料电池;程序升温法
    Abstract
    Tungsten carbides (WC) nanoparticles were synthesized on carbon nanotube (CNT) by a temperature programmed reaction (TPR) method. The influence of the CNT and the difference of WC’s percentage composition toward the performance of the catalyst are discovered. The particle size of WC can be controlled between 8nm to 9nm. The particle size of WC can be achieved to among 16nm. The comparison among samples is based on the X-ray diffraction (XRD), electrochemical testing and scanning electron microscope (SEM) analysis. The XRD results demonstrated the mechanism of the WC’s transformation. The testing results demonstrated that the peak current of Pd/30%WCMH3 is 5.007×10-3A, and the peak potential is -0.1173V. When comparing the electrolyte with different concentration of KOH, we find out that the best electrochemical performance occurs at the concentration of 2M. The peak current is 8.49×10-3A and the peak potential is -0.153V. The linear fitting of log(j)~log(CEtOH) shows that the order of reaction of KOH is about 0.7. The anodic transfer coefficient is 0.11. The diffusion coefficient is calculated as 4.108×10-5cm2s-1 when the concentration of KOH and EtOH is both 1M.
    Key Words: carbon nanotube; ammonium metatungstate; tungsten carbides; palladium; direct ethanol fuel cell; temperature programmed reaction
    目  录
    1.    绪论    1
    1.1. 直接乙醇燃料电池背景简介    1
    1.2. 催化剂    1
    1.2.1. WC催化剂    1
    1.2.2. WC催化剂制备方法    2
    1.3. 催化剂载体    4
    1.3.1. 碳纳米管(CNT)    4
    1.4. 研究课题内容及方案    4
    1.4.1. 研究课题内容    4
    1.4.2. 研究课题方案    5
    2. 实验部分    6
    2.1. 实验药品与仪器    6
    2.1.1. 试剂与气体    6
    2.1.2. 仪器    6
    2.2. 实验步骤    6
    2.2.1. 制备WCMH1    6
    2.2.2. 催化剂负载钯(Pd)    8
    2.3. 表征    8
    2.3.1. X射线衍射测试(XRD)    8
    2.3.2. 元素分析(EDS)    8
    2.3.3. 比表面积与孔径分布表征    8
    2.3.4. 电化学测试    9
    3. 实验结果与分析    10
    3.1. MH1、MH3、MH7、MH8的吸脱附等温曲线图    10
    3.2. 孔径分布柱状图    11
    3.3. XRD物相分析    12
    3.4. EDS测试与分析    22
    3.5. 电化学测试    23
    3.5.1. 不同WC含量的WCMH1在负载Pd之后的循环伏安测试    23
    3.5.2. WCMHx在负载Pd之后的循环伏安测试    24
    3.5.3. 30%WC含量下不同载体负载Pd之后循环伏安测试对比    25
  1. 上一篇:邻苯二甲酸酯增塑剂污染的去除方法研究+文献综述
  2. 下一篇:Mo2C饰Pd基催化剂的制备与性能
  1. 金属纳米晶体铁磁转变温度的热力学研究

  2. 热管/超声协同FSW弱连接的...

  3. 管线钢空间位置焊接工艺性能研究

  4. 阳极支撑与阴极支撑管式...

  5. 石墨烯碳基复合材料制备及其传热特性研究

  6. 永钢三炼钢转炉高碳低磷的控制技术

  7. 纳米TaWN复合薄膜室温蠕变性能研究

  8. NFC协议物理层的软件实现+文献综述

  9. 现代简约美式风格在室内家装中的运用

  10. g-C3N4光催化剂的制备和光催化性能研究

  11. 上市公司股权结构对经营绩效的影响研究

  12. 浅析中国古代宗法制度

  13. 巴金《激流三部曲》高觉新的悲剧命运

  14. C++最短路径算法研究和程序设计

  15. 江苏省某高中学生体质现状的调查研究

  16. 高警觉工作人群的元情绪...

  17. 中国传统元素在游戏角色...

  

About

优尔论文网手机版...

主页:http://www.youerw.com

关闭返回