ð5Þ

ẋC sinðψ − δ2Þ + ẏC cosðψ − δ2Þ + ψ ̇ðl sin δ2 + d cos δ2Þ = Rφ̇2 sin δ2, ð6Þ

ẋC sinðψ − δ3Þ + ẏC cosðψ − δ3Þ − ψ ̇ðl sin δ3 + d cos δ3Þ = Rφ̇3 sin δ3, ð7Þ

ẋC sinðψ + δ4Þ − ẏC cosðψ + δ4Þ + ψ ̇ðl sin δ4 + d cos δ4Þ = Rφ̇4 sin δ4, ð8Þ

Equations (5)–(8) define four non-holonomic constraints. Note, that if translational motions (ψ ̇ = 0) or rotations about the center of mass (ẋC = ẏC = 0) are allowed, then the constraints become holonomic.

3 Dynamic Equations

The equations of motion of the robot can be obtained by using any method of non-holonomic mechanics, for example, by deriving Lagrange’s equations with multipliers or Appel’s equations. The mechanical system under consideration has three degrees of freedom, its configuration is characterized by 7 Lagrangian vari- ables, xC , yC , ψ , φ1, φ2, φ3, and φ4, subject to 4 constraints (5)–(8). For the  case

where all δi = π 4 (i = 1, ... , 4), the governing equations have the simplest form

.. p

xC ðmR2 + 4J1Þ + 4ẏCψ ̇J1 = R   ffi2ffiffiðM1 sinðψ + π 4̸ Þ

+ M2 cosðψ + π 4̸   Þ + M3 cosðψ + π 4̸   Þ + M4 sinðψ + π 4̸   ÞÞ,

ð9Þ

.. p

yC ðmR2 + 4J1Þ − 4ẋCψ ̇J1 = − R   ffi2ffiffiðM1 cosðψ + π 4̸ Þ

− M2 sinðψ + π 4̸   Þ − M3 sinðψ + π 4̸   Þ + M4 cosðψ + π 4̸   ÞÞ,

ð10Þ

.JCR2  + 4J1ðl + dÞ2. ψ ̈ = − Rðl + dÞðM1 − M2 + M3 − M4Þ. ð11Þ

Here  Mi  are   the   torques   applied   to   the   respective   wheels   (i = 1, ... , 4), m = m0 +4 m1 is the total mass of the system, JC = J0 + 4J2 + 4m1ðl2 + d2Þ is the moment of inertia of the entire system relative to the center of   mass.

If the torques Mi (i = 1, ... , 4) are defined as functions of time, then the angle of rotation of the robot about its center of mass ψ ðtÞ can be expressed in terms of quadratures. For the solutions that correspond to the rotation of the robot about its center of mass at a constant angular velocity (ψ ̇ = Ω = const), the torques applied to the wheels are related by

M1 + M3 = M2 + M4. ð12Þ

The motions with Ω = const involve, apart from the rotation about the center of mass, the translatory motion of the robot (Ω = 0, ψ = const). Such motions are of interest for applications.

In this case, the system of Eqs. (9) and (10) is a nonhomogeneous system of linear differential equations with constant coefficients and can be solved in an explicit form.

We assume that the torques developed by each of the four identical DC motors are defined by (see e.g. Gorinevsky et al.  1997)

MiðtÞ = cuUiðtÞ − cvφ̇iðtÞ,

上一篇:固液搅拌罐的CFD模拟英文文献和中文翻译
下一篇:高填充聚苯硫醚变温模具控制英文文献和中文翻译

数控机床制造过程的碳排...

新的数控车床加工机制英文文献和中文翻译

抗震性能的无粘结后张法...

锈蚀钢筋的力学性能英文文献和中文翻译

未加筋的低屈服点钢板剪...

汽车内燃机连杆载荷和应...

审计的优化管理英文文献和中文翻译

老年2型糖尿病患者运动疗...

互联网教育”变革路径研究进展【7972字】

安康汉江网讯

LiMn1-xFexPO4正极材料合成及充放电性能研究

我国风险投资的发展现状问题及对策分析

ASP.net+sqlserver企业设备管理系统设计与开发

张洁小说《无字》中的女性意识

网络语言“XX体”研究

麦秸秆还田和沼液灌溉对...

新課改下小學语文洧效阅...