(2) 悬臂起重机(悬臂吊、电动环链葫芦吊、气动平衡吊等)
(3) 导轨式搬运系统(悬挂轨道、轻型轨道、单梁起重机、双梁起重机)
Title: Hydraulic presser drive
ABSTRACT:
Hydraulic presser drive and air pressure drive hydraulic fluid as the transmission is made according to the 17th century, Pascal's principle of hydrostatic pressure to drive the development of an emerging technology, the United Kingdom in 1795 • Braman Joseph (Joseph Braman ,1749-1814), in London water as a medium to form hydraulic press used in industry, the birth of the world's first hydraulic press. Media work in 1905 will be replaced by oil-water and further improved. After the World War I (1914-1918) ,because of the extensive application of hydraulic transmission, especially after 1920, more rapid development. Hydraulic components in the late 19th century about the early 20th century, 20 years, only started to enter the formal phase of industrial production. 1925 Vickers (F. Vikers) the invention of the pressure balanced vane pump, hydraulic components for the modern industrial or hydraulic transmission of the gradual establishment of the foundation. The early 20th century G • Constantimscofluct- uations of the energy carried out by passing theoretical and practical research; in 1910 on the hydraulic trans- mission (hydraulic coupling, hydraulic torque converter, etc.) contributions, so that these two areas of development. The Second World War (1941-1945) period, in the United States 30% of machine tool applications in the hydraulic transmission. It should be noted that the development of hydraulic transmission in Japan than Europe and the United States and other countries for nearly 20 years later. Before and after in 1955, the rapid development of Japan's hydraulic drive, set up in 1956, "Hydraulic Industry." Nearly 20 to 30 years, the development of Japan's fast hydraulic transmission, a world leader. 7 Hydraulic transmission There are many outstanding advantages, it is widely used, such as general industrial use of plastics processing machinery, the pressure of machinery, machine tools, etc.; operating machinery engineering machinery, construction machinery, agricultural machinery, automobiles, etc.; iron and steel indu-stry metallurgical machinery, lifting equipment, such as roller adjustment device; civil water projects with flood control and dam gate devices, bed lifts installations, bridges and other manipulation of institutions; speed turbine power plant installations, nuclear power plants, etc.; ship from the deck heavy machinery (winch), the bow doors, bulkhead valve, stern thruster, etc.; special antenna technology giant with control devices, measurement buoys, movements such as rotating stage; military industrial control devices used in artillery, ship antirolling devices, aircraft simulation, aircraft retractable landing gear and rudder control devices and other devices. A complete hydraulic system consists of five parts, namely, power components, the implementation of components, control components, auxiliary components and hydraulic oil. The role of dynamic components of the original motive fluid into mechanical energy to the pressure that the hydraulic system of pumps, it is to power the entire hydraulic system. The structure of the form of hydraulic pump gears are generally pump, vane pump and piston pump. Implementation of components (such as hydraulic cylinders and hydraulic motors) which is the pressure of the liquid can be converted to mechanical energy to drive the load for a straight line reciprocating movement or rotational movement. Control components (that is, the various hydraulic valves) in the hydraulic system to control and regulate the pressure of liquid, flow rate and direction. According to the different control functions, hydraulic pressure control valve can be pided into valves, flow control valves and directional control valve. Pressure control valves are pided into benefits flow valve (safety valve), pressure relief valve, sequence valve, pressure relays, etc.; flow control valves including throttle, adjusting the valves, flow persion valve sets, etc.; directional control valve includes a one-way valve , one-way fluid control valve, shuttle valve, valve and so on. Under the control of different ways, can be pided into the hydraulic valve control switch valve, control valve and set the value of the ratio control valve. Auxiliary components, including fuel tanks, oil filters, tubing and pipe joints, seals, pressure gauge, oil level, such as oil dollars. Hydraulic oil in the hydraulic system is the work of the energy transfer medium, there are a variety of mineral oil, emulsion oil hydraulic molding Hop categories. The concept of gear pump is very simple, that it is two of the most basic form of the same size gear in a close cooperation of mutual engagement with the rotating shell, the shell's internal similar "8" shape, the two gears mounted inside , the diameter of gear and work closely withboth sides and shell. From the extruder the material inhaled into the mouth of two intermediate gears, and full of the space, with the teeth along the shell of the rotary movement, the final two hours from the meshing teeth. Speaking in terms of gear, also known as positive displacement pump device, that is, inside the cylinder like a piston, when a tooth to another tooth space of the fluid, the liquid was squeezed mechanically to row out. Because the liquid is incompressible, so the liquid and the tooth at the same time will not be able to occupy the same space, so that the liquid has been ruled out. Because of the constant mesh gear, this phenomenon occurs on a row and, therefore, the pump provides a continuous export to exclude the amount of a turn each pump, the volume of discharge is the same. With the continuous rotation of the driveshaft, pump fluid is continuously discharged. Pump flow directly to the speed of the pump. In fact, there is little pump of the fluid loss, which makes the operation of pumps can not achieve 100% efficiency, as these fluids are used to on both sides of bearing and gear lubrication, and the pump body is also not possible with no gap, it can not be so that 100% of fluid discharged from the export, so a small amount of fluid loss is inevitable. However, a good pump can be run out of material for the majority, will still be able to achieve 93% ~ 98% efficiency.