4 p {Mg
Equat ion 16 is int egrat ed num erically over th e soot layer th ickn ess 。
For norma l operat ing conditions, th e var iat ion of th e gas density due to press ur e loss thr ough th e wall is negligible 。 Moreover, th e Forchh eimer term an d th e slip corr ection can be neglected。27
µvw
dur ing each steady-stat e point of th is tes t。 The sam e gra ph prese nt s th e comput ed evolut ion of soot ma ss in th e filter dur ing th e tes t。 There is no direct way to validat e th is res ult expe rimenta lly。 Howeve r, th e usua l practice is to compar e th e measur ed an d comput ed press ur e drops, which is a good indicat ion of th e soot ma ss evolut ion。 This compar ison is give n in th e middle gra ph of Figur e 5, togeth er with th e measur ed exhau st ma ss flow rat e。
∆pwall )
ws (23)
s
The bottom gra ph prese nt s th e measur ed NOx an d NO2 emissions up- an d downstr eam of th e filter, to- geth er with th e comput ed NO2 concentrat ion down-
The checkered face of th e filter cau ses a sudde n
contra ction of th e flow at th e inlet an d a sudde n exp an sion at th e out le t。 These press ur e losses can be assessed with th e followi ng formu las respe ctively:28
str eam of th e filter。 The fraction of NO2/NOx at th e filter inlet depe nds on th e activity of th e (nonoptimized) oxidat ion cata lyst with respe ct to NO oxidat ion to NO2。
Our measur ement s indicat ed that th e NO to NO
contra ction
2
2Fvchan _in
2
conve rsion efficie ncy of th e cata lyst reached a maximum
concentrat ions at th e filter inlet could be achiev able by
∆p )
(D - 2w)
1。1 - 0。4
s
D2
1
21
2 (24)
2
of 30% betwee n 350 an d 400 °C。 Obviously, higher NO2
a more selective oxidat ion cata lyst。 As expected, NOx
emissions ar e equa l before an d after th e filter。 The
production of CO an d is a clear indicat ion of NO2
∆pexp an sion )
1 -
2(D + ws)
2Fvchan _out
(25)
measur ed consum ption of NO2 is accompan ied by a
reactivity with soot in th e filter。
Initial and Bounda ry Conditions 。 The initial temperatur e an d soot loading along th e chann el wall ar e provided as initial conditions for th e model。 The boun dar y conditions, which need to be defined, include th e exhau st gas temperatur e, flow rat e, an d oxyge n cont ent as functions of time。 The govern ing equat ions prese nt ed above ar e solved num erically with finite difference techniques using an iterat ive proced ur e in th e sp at ial direction contr olled by th e requirement of zero axial velocity at th e end of th e inlet chann el an d atm osp heric press ur e at th e end of th e exit chann el。 Time mar ching was effected with a fourth -orde r Runge- Kutta techn ique。
Soot Accumu lation Mode l。 It is ass um ed that th e soot part icles in th e engine ar e homogeneously distr ib- ut ed in th e engine exhau st an d th ey follow th e str eam-
Ha ving fitt ed th e reaction rat e constant s (preexpo- nent ial factor an d activat ion energy) of th e NO2 + car bon reaction, it is possible to obtain a good corr elation betwee n measur ement an d model res ults over a rela- tively wide temperatur e ran ge, as shown in th e bottom gra ph of Figur e 5。 The activat ion energy used in th is simu lat ion is 40 k J/mol。