基于内容的推荐一般包括以下三步:
1. 特征提取:为每个产品抽取出一些特征来表示此产品
2. 喜好特征学习:利用用户过去喜欢的产品的特征数据,来学习出此用户的喜好特征;
3. 产生推荐:根据此用户喜好与候选产品的特征,把相关性最大的产品推荐给这个用户。
2.1.4 基于知识的推荐技术
基于知识的推荐(Knowledge-based Recommendation)在某种程度是可以看成是一种推理(Inference)技术,它不是建立在用户需要和偏好基础上推荐的[7]。效用知识(Functional Knowledge)是一种关于一个项目如何满足某一特定用户的知识,因此能解释需要和推荐的关系,所以用户资料可以是任何能支持推理的知识结构,它可以是用户已经规范化的查询,也可以是一个更详细的用户需要的表示。基于知识的方法因为它们所用的功能知识不同而有明显区别。
上一篇:基于压缩感知的传感器网络能量高效数据采集研究
下一篇:Android信息融合客户端的设计与实现

基于Apriori算法的电影推荐

基于PageRank算法的网络数据分析

基于神经网络的验证码识别算法

基于网络的通用试题库系...

python基于决策树算法的球赛预测

基于消费者个性特征的化...

基于网络的通用试题库系统的整体规划与设计

AT89C52单片机的超声波测距...

C#学校科研管理系统的设计

医院财务风险因素分析及管理措施【2367字】

国内外图像分割技术研究现状

公寓空调设计任务书

志愿者活动的调查问卷表

承德市事业单位档案管理...

10万元能开儿童乐园吗,我...

中国学术生态细节考察《...

神经外科重症监护病房患...