摘要随着当今微电子领域高效且快速发展,BGA电子封装技术逐渐替换了以往那些陈旧的、低效的封装技术,成为现在集成电路最常用,也是最先进的封装技术之一。而焊点可靠性研究也成为了解决BGA电子封装技术寿命问题的关键,本文将从球栅阵列元器件焊点尺寸出发,深入研究改变焊点尺寸或材料对焊点的寿命有何影响。同时,运用现在普遍用来进行有限元模拟的ANSYS软件,对球栅阵列1/4模型进行计算机模拟,再从各种情况上进行对比,选出最佳的组合,完成对球栅阵列元器件焊点尺寸优化设计。39611
因为要用到ANSYS软件对模型进行有限元分析,所以能熟练掌握ANSYS软件的各种操作是本设计的前提。其次,在对焊点进行寿命预测时,本文将结合两种典型的本构方程构建新的方程。最后,通过曲线拟合的算法,得到优化设计结果。 毕业论文关键词:BGA封装;焊点尺寸;有限元模拟;优化设计
Optimization design of solder ball grid array components
Abstract
With the rapid development of microelectronics and efficient, BGA electronic packaging technology has gradually replaced the past of the old, inefficient packaging technology, has become one of the most commonly used integrated circuit now, is the most advanced packaging technology.The reliability study of the solder joints has become the key to resolving the problem of BGA electronic packaging technology life, this paper from the perspective of ball grid array element size of solder joints, in-depth study of the impact of changing the life of solder joint size or material on the solder joint.At the same time, using the now widely used for finite element simulation of the ANSYS software, the computer simulation of ball grid array 1/4 model, then compare from various situations, choose the best combination, to complete the optimization design of solder ball grid array components.
To use the ANSYS software for finite element analysis of the model, so it can be proficient in operating ANSYS software is the premise of the design.Secondly, to predict the life of solder joints, this paper will combine the two kinds of typical constitutive equation to construct new equation.Finally, through the curve fitting algorithm, we can get the optimal design results.
Keywords: BGA package; the size of solder joints; finite element simulation; optimization design
目录
摘要III
AbstractIV
第一章 绪论 1
1.1课题综述 1
1.1.1三级微电子封装 1
1.1.2 BGA电子封装 2
1.1.3 微电子封装无铅化 3
1.2研究意义 4
1.3国内外的发展现状 4
1.4 BGA封装的可靠性研究 5
1.5 本章小结 5
第二章 ANSYS有限元分析技术 6
2.1有限元法的基本思想 6
2.2球栅阵列焊点尺寸封装模型 6
2.2.1单个焊点的有限元模型 7
2.2.2 1/4模型 9
2.3材料参数的选择 9
2.4单元类型的选择 9
2.5划分网格 10
2.6加载边界条件 11
2.7本章小结 11
第三章 模拟运算与结果分析 12
3.1热循环加载条件 12
3.2 Anand本构方程 12
3.3非线性数值计算方法 13
3.4模型假设 14
3.5模拟结果分析 14
3.6本章小结 18
第四章 焊点尺寸的优化设计 19
4.1分析对象及尺寸优化方案 19