【摘要】为优化塑料球栅阵列封装(PBGA)电子元器件结构,首先需要对PBGA有所了解,经过查阅大量资料,深入研究后得出其结构优化最重要的就是分析焊点的可靠性。采用ANSYS软件对PBGA电子元器件进行建模。借用Anand模型描述钎料本构方程,对温度循环载荷下一种阵列形式的PBGA电子元器件中的焊点的应力应变状态进行有限元分析。由于PBGA良好的对称性,选取四分之一电子元器件建立有限元模型。经过分析后发现,在靠近芯片边缘的地方出现应力集中现象,芯片角落上的焊点应力值最大,最容易失效。随后针对该位置的焊点进行可靠性分析,通过改变芯片尺寸和改变该焊点尺寸等设计来优化关键焊点的可靠性,从而达到优化PBGA电子元器件结构的目的。39780
【毕业论文关键词】PBGA;焊点;有限元;结构优化
PBGA electronic components structure optimization design
【abstract】To optimize the plastic ball grid array package (PBGA) Electronic Components structure, we first need to understand PBGA, through access to large amounts of data, obtained after in-depth study of its most important optimization is to analyze the reliability of solder joints. PBGA using ANSYS software for modeling of electronic components. Borrowing Anand model describes solder of the constitutive equations for the stress and strain state in the form of an array of temperature cyclic loading PBGA solder electronic components in finite element analysis. Since PBGA good symmetry, select a quarter finite element model of electronic components. After analysis, stress concentration occurs near the edge of the chip, the chip corner joints stress on the largest, most likely to fail. Followed by the location for the solder joint reliability analysis, designed to optimize the critical solder joint reliability by changing the chip size and change the size of the pad so as to achieve the purpose of optimizing the structure of PBGA electronic components.
【key words】PBGA;solder joints;finite element;chip size
目录