摘要预控破片战斗部在爆炸过程中,形成一定形状和质量的破片,破片获得一定的初速飞散出去,破片初速和飞散方向角是衡量战斗部性能的两个重要参数。由于战斗部爆炸是一个非常复杂的物理和化学变化过程,通常采用理论分析结合试验研究的方法,不但研究设计周期长,而且成本较高。目前随着现代计算科学与数值仿真技术的发展,数值模拟成为战斗部设计的一个重要手段,本文采用数值仿真方法对预控破片战斗部进行二文数值模拟和分析。8612
利用有限元分析软件AUTODYN,对预控破片战斗部采用中心起爆方式分析。数值模拟结果表明,刻槽为V型槽,且刻槽深度在0.4-0.6倍壁厚的时候,有效破片形成率高,飞散角小,密集杀伤性好。
关键词 预控破片 AUTODYN 数值仿真 破片速度 飞散角
毕业设计说明书(论文)外文摘要
Title Groove depth of pre-control fragment warhead Lethality of the warhead
Abstract
In the Pre-controlled fragmentation warhead explosion process, fragments of a certain shape and quality are formed, and those fragments get a certain initial velocity, fragment initial velocity and scattering angle of the direction are two important parameters to measure the performance of the warhead. Since the explosion of the warhead is a very complex physical and chemical process, commonly used theoretical analysis combined with the pilot study, not only the study design cycle is long, but the cost is high. With the development of modern computational science and numerical simulation technology, Numerical simulation become an important means of warhead design, a numerical simulation method of two-dimensional numerical simulation is adopted to analysis on the pre-controlled fragmentation warhead.
Using finite element analysis software, AUTODYN, analysis of the pre-controlled fragmentation warhead with center initiation. Numerical simulation results show that, when the groove is V-shaped groove, and groove depth of 0.4-0.6 times the shell thickness, the effective fragment formation rate is higher, the scattering angle is smaller and the intensive destruction is better.
Keywords Pre-control fragment the AUTODYN numerical simulation the speed of the fragments scattering angle
目 次
1 绪论 1
1.1 预控破片战斗部简介 1
1.2 研究的目的和意义 1
1.3 国内外研究现状 2
1.4 本文的主要内容及工作 3
2 预控破片内刻槽理论 4
2.1 引言 4
2.2 应力集中问题 6
2.3 开槽列阵问题 6
2.4 网阵战斗部模型 7
2.5 网络间隔要求 11
3 预控破片战斗部有限元模型 12
3.1 引言 12
3.2 有限元动力分析理论 12
3.3 AUTODYN简介 14
3.4 预控破片战斗部有限元模型的建立 18
3.5 预控破片战斗部有限元模型的算法 19
3.6 预控破片战斗部有限元仿真计算 21
3 预控破片战斗部刻槽形状和深度对威力的影响 23
4.1 引言 23
4.2 刻槽形状和深度对战斗部杀伤威力的影响 23
4.2.1 刻槽形状和深度对破片速度的影响 26
4.2.2 刻槽形状和深度对有效破片数的影响 30